from typing import Tuple, Optional import os import gradio as gr import numpy as np import random import spaces import cv2 from diffusers import DiffusionPipeline from diffusers import FluxInpaintPipeline import torch from PIL import Image, ImageFilter from huggingface_hub import login from diffusers import AutoencoderTiny, AutoencoderKL from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download import copy import random import time import boto3 from io import BytesIO from datetime import datetime from diffusers.utils import load_image, make_image_grid import json from preprocessor import Preprocessor from diffusers.pipelines.flux.pipeline_flux_controlnet_inpaint import FluxControlNetInpaintPipeline from diffusers.models.controlnet_flux import FluxControlNetModel HF_TOKEN = os.environ.get("HF_TOKEN") os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30' login(token=HF_TOKEN) MAX_SEED = np.iinfo(np.int32).max IMAGE_SIZE = 768 # init device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "black-forest-labs/FLUX.1-dev" controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha' controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) pipe = FluxControlNetInpaintPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16).to(device) pipe.to("cuda") torch.backends.cuda.matmul.allow_tf32 = True pipe.vae.enable_tiling() pipe.vae.enable_slicing() pipe.enable_model_cpu_offload() # for saving memory control_mode_ids = { "scribble_hed": 0, "canny": 0, # supported "mlsd": 0, # supported "tile": 1, # supported "depth_midas": 2, # supported "blur": 3, # supported "openpose": 4, # supported "gray": 5, # supported "low_quality": 6, # supported } def clear_cuda_cache(): torch.cuda.empty_cache() class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def calculate_image_dimensions_for_flux( original_resolution_wh: Tuple[int, int], maximum_dimension: int = IMAGE_SIZE ) -> Tuple[int, int]: width, height = original_resolution_wh if width > height: scaling_factor = maximum_dimension / width else: scaling_factor = maximum_dimension / height new_width = int(width * scaling_factor) new_height = int(height * scaling_factor) new_width = new_width - (new_width % 32) new_height = new_height - (new_height % 32) return new_width, new_height def process_mask( mask: Image.Image, mask_inflation: Optional[int] = None, mask_blur: Optional[int] = None ) -> Image.Image: """ Inflates and blurs the white regions of a mask. Args: mask (Image.Image): The input mask image. mask_inflation (Optional[int]): The number of pixels to inflate the mask by. mask_blur (Optional[int]): The radius of the Gaussian blur to apply. Returns: Image.Image: The processed mask with inflated and/or blurred regions. """ if mask_inflation and mask_inflation > 0: mask_array = np.array(mask) kernel = np.ones((mask_inflation, mask_inflation), np.uint8) mask_array = cv2.dilate(mask_array, kernel, iterations=1) mask = Image.fromarray(mask_array) if mask_blur and mask_blur > 0: mask = mask.filter(ImageFilter.GaussianBlur(radius=mask_blur)) clear_cuda_cache() return mask def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name): print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name) connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com" s3 = boto3.client( 's3', endpoint_url=connectionUrl, region_name='auto', aws_access_key_id=access_key, aws_secret_access_key=secret_key ) current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S") image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png" buffer = BytesIO() image.save(buffer, "PNG") buffer.seek(0) s3.upload_fileobj(buffer, bucket_name, image_file) print("upload finish", image_file) clear_cuda_cache() return image_file def run_flux( image: Image.Image, mask: Image.Image, control_image: Image.Image, control_mode: int, prompt: str, lora_path: str, lora_weights: str, lora_scale: float, seed_slicer: int, randomize_seed_checkbox: bool, strength_slider: float, num_inference_steps_slider: int, resolution_wh: Tuple[int, int], progress ) -> Image.Image: print("Running FLUX...") if lora_path and lora_weights: with calculateDuration("load lora"): print("start to load lora", lora_path, lora_weights) pipe.unload_lora_weights() pipe.load_lora_weights(lora_path, weight_name=lora_weights) width, height = resolution_wh if randomize_seed_checkbox: seed_slicer = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed_slicer) with calculateDuration("run pipe"): generated_image = pipe( prompt=prompt, image=image, mask_image=mask, control_image=control_image, control_mode=control_mode, width=width, height=height, strength=strength_slider, generator=generator, num_inference_steps=num_inference_steps_slider, max_sequence_length=256, joint_attention_kwargs={"scale": lora_scale} ).images[0] clear_cuda_cache() return generated_image @spaces.GPU(duration=120) def process( image_url: str, mask_url: str, inpainting_prompt_text: str, mask_inflation_slider: int, mask_blur_slider: int, control_mode: str, seed_slicer: int, randomize_seed_checkbox: bool, strength_slider: float, num_inference_steps_slider: int, lora_path: str, lora_weights: str, lora_scale: str, upload_to_r2: bool, account_id: str, access_key: str, secret_key: str, bucket:str, progress=gr.Progress(track_tqdm=True) ): clear_cuda_cache() result = {"status": "false", "message": ""} if not image_url: gr.Info("please enter image url for inpaiting") result["message"] = "invalid image url" return None, json.dumps(result) if not inpainting_prompt_text: gr.Info("Please enter inpainting text prompt.") result["message"] = "invalid inpainting prompt" return None, json.dumps(result) with calculateDuration("load image"): image = load_image(image_url) mask = load_image(mask_url) if not image or not mask: gr.Info("Please upload an image & mask by url.") result["message"] = "can not load image" return None, json.dumps(result) # generate with calculateDuration("resize & process mask"): width, height = calculate_image_dimensions_for_flux(original_resolution_wh=image.size) image = image.resize((width, height), Image.LANCZOS) mask = mask.resize((width, height), Image.LANCZOS) mask = process_mask(mask, mask_inflation=mask_inflation_slider, mask_blur=mask_blur_slider) # generated control_ with calculateDuration("Preprocessor Image"): print("start to generate control image") preprocessor = Preprocessor() if control_mode == "depth_midas": preprocessor.load("Midas") control_image = preprocessor( image=image, image_resolution=width, detect_resolution=512, ) if control_mode == "openpose": preprocessor.load("Openpose") control_image = preprocessor( image=image, hand_and_face=True, image_resolution=width, detect_resolution=512, ) if control_mode == "canny": preprocessor.load("Canny") control_image = preprocessor( image=image, image_resolution=width, detect_resolution=512, ) if control_mode == "mlsd": preprocessor.load("MLSD") control_image = preprocessor( image=image_before, image_resolution=width, detect_resolution=512, ) if control_mode == "scribble_hed": preprocessor.load("HED") control_image = preprocessor( image=image_before, image_resolution=image_resolution, detect_resolution=preprocess_resolution, ) control_image = control_image.resize((width, height), Image.LANCZOS) control_mode_id = control_mode_ids[control_mode] clear_cuda_cache() try: generated_image = run_flux( image=image, mask=mask, control_image=control_image, control_mode=control_mode_id, prompt=inpainting_prompt_text, lora_path=lora_path, lora_scale=lora_scale, lora_weights=lora_weights, seed_slicer=seed_slicer, randomize_seed_checkbox=randomize_seed_checkbox, strength_slider=strength_slider, num_inference_steps_slider=num_inference_steps_slider, resolution_wh=(width, height), progress=progress ) except Exception as e: result["status"] = "faield" result["message"] = "generate image failed" print(e) generated_image = None print("run flux finish") if generated_image: if upload_to_r2: with calculateDuration("upload image"): url = upload_image_to_r2(generated_image, account_id, access_key, secret_key, bucket) result = {"status": "success", "message": "upload image success", "url": url} else: result = {"status": "success", "message": "Image generated but not uploaded"} clear_cuda_cache() final_images = [] final_images.append(image) final_images.append(mask) final_images.append(control_image) if generated_image: final_images.append(generated_image) return final_images, json.dumps(result) with gr.Blocks() as demo: gr.Markdown("Flux inpaint with lora") with gr.Row(): with gr.Column(): image_url = gr.Text( label="Orginal image url", show_label=True, max_lines=1, placeholder="Enter image url for inpainting", container=False ) mask_url = gr.Text( label="Mask image url", show_label=True, max_lines=1, placeholder="Enter url of masking", container=False, ) inpainting_prompt_text_component = gr.Text( label="Inpainting prompt", show_label=True, max_lines=1, placeholder="Enter text to generate inpainting", container=False, ) control_mode = gr.Dropdown( [ "canny", "depth_midas", "openpose", "mlsd"], label="Controlnet Model", info="choose controlnet model!", value="openpose" ) submit_button_component = gr.Button(value='Submit', variant='primary', scale=0) with gr.Accordion("Lora Settings", open=True): lora_path = gr.Textbox( label="Lora model path", show_label=True, max_lines=1, placeholder="Enter your model path", info="Currently, only LoRA hosted on Hugging Face'model can be loaded properly.", value="" ) lora_weights = gr.Textbox( label="Lora weights", show_label=True, max_lines=1, placeholder="Enter your lora weights name", value="" ) lora_scale = gr.Slider( label="Lora scale", show_label=True, minimum=0, maximum=1, step=0.1, value=0.9, ) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): mask_inflation_slider_component = gr.Slider( label="Mask inflation", info="Adjusts the amount of mask edge expansion before " "inpainting.", minimum=0, maximum=20, step=1, value=5, ) mask_blur_slider_component = gr.Slider( label="Mask blur", info="Controls the intensity of the Gaussian blur applied to " "the mask edges.", minimum=0, maximum=20, step=1, value=5, ) seed_slicer_component = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed_checkbox_component = gr.Checkbox( label="Randomize seed", value=True) with gr.Row(): strength_slider_component = gr.Slider( label="Strength", info="Indicates extent to transform the reference `image`. " "Must be between 0 and 1. `image` is used as a starting " "point and more noise is added the higher the `strength`.", minimum=0, maximum=1, step=0.01, value=0.85, ) num_inference_steps_slider_component = gr.Slider( label="Number of inference steps", info="The number of denoising steps. More denoising steps " "usually lead to a higher quality image at the", minimum=1, maximum=50, step=1, value=20, ) with gr.Accordion("R2 Settings", open=False): upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False) with gr.Row(): account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id") bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here") with gr.Row(): access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here") secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here") with gr.Column(): generated_images = gr.Gallery(label="Result", show_label=True) output_json_component = gr.Code(label="JSON Result", language="json") submit_button_component.click( fn=process, inputs=[ image_url, mask_url, inpainting_prompt_text_component, mask_inflation_slider_component, mask_blur_slider_component, control_mode, seed_slicer_component, randomize_seed_checkbox_component, strength_slider_component, num_inference_steps_slider_component, lora_path, lora_weights, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket ], outputs=[ generated_images, output_json_component ] ) demo.queue(api_open=False) demo.launch()