Spaces:
Runtime error
Runtime error
File size: 33,148 Bytes
4039be3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 |
""" CLAP Model
Adapted from CLIP: https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
Adapted to the Audio Task.
"""
from collections import OrderedDict
from dataclasses import dataclass
from email.mime import audio
from typing import Tuple, Union, Callable, Optional
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from .timm_model import TimmModel
import logging
from .utils import freeze_batch_norm_2d
from .pann_model import create_pann_model
from .htsat import create_htsat_model
from transformers import BertModel, RobertaModel, BartModel
from transformers.tokenization_utils_base import BatchEncoding
class MLPLayers(nn.Module):
def __init__(self, units=[512, 512, 512], nonlin=nn.ReLU(), dropout=0.1):
super(MLPLayers, self).__init__()
self.nonlin = nonlin
self.dropout = dropout
sequence = []
for u0, u1 in zip(units[:-1], units[1:]):
sequence.append(nn.Linear(u0, u1))
sequence.append(self.nonlin)
sequence.append(nn.Dropout(self.dropout))
sequence = sequence[:-2]
self.sequential = nn.Sequential(*sequence)
def forward(self, X):
X = self.sequential(X)
return X
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(
OrderedDict(
[
("-1", nn.AvgPool2d(stride)),
(
"0",
nn.Conv2d(
inplanes,
planes * self.expansion,
1,
stride=1,
bias=False,
),
),
("1", nn.BatchNorm2d(planes * self.expansion)),
]
)
)
def forward(self, x: torch.Tensor):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AttentionPool2d(nn.Module):
def __init__(
self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None
):
super().__init__()
self.positional_embedding = nn.Parameter(
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5
)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(
2, 0, 1
) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x,
key=x,
value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat(
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False,
)
return x[0]
class ModifiedResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
super().__init__()
self.output_dim = output_dim
self.image_size = image_size
# the 3-layer stem
self.conv1 = nn.Conv2d(
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
)
self.bn1 = nn.BatchNorm2d(width // 2)
self.conv2 = nn.Conv2d(
width // 2, width // 2, kernel_size=3, padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(width // 2)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
self.init_parameters()
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def init_parameters(self):
if self.attnpool is not None:
std = self.attnpool.c_proj.in_features**-0.5
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
assert (
unlocked_groups == 0
), "partial locking not currently supported for this model"
for param in self.parameters():
param.requires_grad = False
if freeze_bn_stats:
freeze_batch_norm_2d(self)
def stem(self, x):
for conv, bn in [
(self.conv1, self.bn1),
(self.conv2, self.bn2),
(self.conv3, self.bn3),
]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
def forward(self, x):
x = self.stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.attnpool(x)
return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
class QuickGELU(nn.Module):
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", act_layer()),
("c_proj", nn.Linear(d_model * 4, d_model)),
]
)
)
self.ln_2 = LayerNorm(d_model)
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
x = x + self.attention(self.ln_1(x), attn_mask=attn_mask)
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(
self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU
):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(width, heads, act_layer=act_layer)
for _ in range(layers)
]
)
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
for r in self.resblocks:
x = r(x, attn_mask=attn_mask)
return x
class VisualTransformer(nn.Module):
def __init__(
self,
image_size: int,
patch_size: int,
width: int,
layers: int,
heads: int,
output_dim: int,
act_layer: Callable = nn.GELU,
):
super().__init__()
self.image_size = image_size
self.output_dim = output_dim
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
scale = width**-0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(
scale * torch.randn((image_size // patch_size) ** 2 + 1, width)
)
self.ln_pre = LayerNorm(width)
self.text_branch = Transformer(width, layers, heads, act_layer=act_layer)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
assert (
unlocked_groups == 0
), "partial locking not currently supported for this model"
for param in self.parameters():
param.requires_grad = False
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat(
[
self.class_embedding.to(x.dtype)
+ torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
),
x,
],
dim=1,
) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_branch(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x[:, 0, :])
if self.proj is not None:
x = x @ self.proj
return x
@dataclass
class CLAPVisionCfg:
layers: Union[Tuple[int, int, int, int], int] = 12
width: int = 768
patch_size: int = 16
image_size: Union[Tuple[int, int], int] = 224
timm_model_name: str = (
None # a valid model name overrides layers, width, patch_size
)
timm_model_pretrained: bool = (
False # use (imagenet) pretrained weights for named model
)
timm_pool: str = (
"avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
)
timm_proj: str = (
"linear" # linear projection for timm model output ('linear', 'mlp', '')
)
# Audio Config Class
@dataclass
class CLAPAudioCfp:
model_type: str = "PANN"
model_name: str = "Cnn14"
sample_rate: int = 48000
# Param
audio_length: int = 1024
window_size: int = 1024
hop_size: int = 1024
fmin: int = 50
fmax: int = 14000
class_num: int = 527
mel_bins: int = 64
clip_samples: int = 480000
@dataclass
class CLAPTextCfg:
context_length: int
vocab_size: int
width: int
heads: int
layers: int
model_type: str
class CLAP(nn.Module):
def __init__(
self,
embed_dim: int,
audio_cfg: CLAPAudioCfp,
text_cfg: CLAPTextCfg,
quick_gelu: bool = False,
enable_fusion: bool = False,
fusion_type: str = "None",
joint_embed_shape: int = 512,
mlp_act: str = "relu",
):
super().__init__()
if isinstance(audio_cfg, dict):
audio_cfg = CLAPAudioCfp(**audio_cfg)
if isinstance(text_cfg, dict):
text_cfg = CLAPTextCfg(**text_cfg)
self.audio_cfg = audio_cfg
self.text_cfg = text_cfg
self.enable_fusion = enable_fusion
self.fusion_type = fusion_type
self.joint_embed_shape = joint_embed_shape
self.mlp_act = mlp_act
self.context_length = text_cfg.context_length
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
# memory efficient in recent PyTorch releases (>= 1.10).
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
act_layer = QuickGELU if quick_gelu else nn.GELU
if mlp_act == "relu":
mlp_act_layer = nn.ReLU()
elif mlp_act == "gelu":
mlp_act_layer = nn.GELU()
else:
raise NotImplementedError
# audio branch
# audio branch parameters
if audio_cfg.model_type == "PANN":
self.audio_branch = create_pann_model(audio_cfg, enable_fusion, fusion_type)
elif audio_cfg.model_type == "HTSAT":
self.audio_branch = create_htsat_model(
audio_cfg, enable_fusion, fusion_type
)
else:
logging.error(f"Model config for {audio_cfg.model_type} not found")
raise RuntimeError(f"Model config for {audio_cfg.model_type} not found.")
# text branch
# text branch parameters
if text_cfg.model_type == "transformer":
self.text_branch = Transformer(
width=text_cfg.width,
layers=text_cfg.layers,
heads=text_cfg.heads,
act_layer=act_layer,
)
self.vocab_size = text_cfg.vocab_size
self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width)
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, text_cfg.width)
)
self.ln_final = LayerNorm(text_cfg.width)
self.text_transform = MLPLayers(
units=[
self.joint_embed_shape,
self.joint_embed_shape,
self.joint_embed_shape,
],
dropout=0.1,
)
self.text_projection = nn.Sequential(
nn.Linear(text_cfg.width, self.joint_embed_shape),
mlp_act_layer,
nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
)
elif text_cfg.model_type == "bert":
self.text_branch = BertModel.from_pretrained("bert-base-uncased")
self.text_transform = MLPLayers(
units=[
self.joint_embed_shape,
self.joint_embed_shape,
self.joint_embed_shape,
],
dropout=0.1,
)
self.text_projection = nn.Sequential(
nn.Linear(768, self.joint_embed_shape),
mlp_act_layer,
nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
)
elif text_cfg.model_type == "roberta":
self.text_branch = RobertaModel.from_pretrained("roberta-base")
self.text_transform = MLPLayers(
units=[
self.joint_embed_shape,
self.joint_embed_shape,
self.joint_embed_shape,
],
dropout=0.1,
)
self.text_projection = nn.Sequential(
nn.Linear(768, self.joint_embed_shape),
mlp_act_layer,
nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
)
elif text_cfg.model_type == "bart":
self.text_branch = BartModel.from_pretrained("facebook/bart-base")
self.text_transform = MLPLayers(
units=[
self.joint_embed_shape,
self.joint_embed_shape,
self.joint_embed_shape,
],
dropout=0.1,
)
self.text_projection = nn.Sequential(
nn.Linear(768, self.joint_embed_shape),
mlp_act_layer,
nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
)
else:
logging.error(f"Model config for {text_cfg.model_type} not found")
raise RuntimeError(f"Model config for {text_cfg.model_type} not found.")
self.text_branch_type = text_cfg.model_type
# text branch parameters
# audio branch parameters
self.audio_transform = MLPLayers(
units=[
self.joint_embed_shape,
self.joint_embed_shape,
self.joint_embed_shape,
],
dropout=0.1,
)
# below here is text branch parameters
# ============================================================================================================
self.audio_projection = nn.Sequential(
nn.Linear(embed_dim, self.joint_embed_shape),
mlp_act_layer,
nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
)
self.logit_scale_a = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.logit_scale_t = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False)
self.init_text_branch_parameters()
def init_text_branch_parameters(self):
if self.text_branch_type == "transformer":
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.text_branch.width**-0.5) * (
(2 * self.text_branch.layers) ** -0.5
)
attn_std = self.text_branch.width**-0.5
fc_std = (2 * self.text_branch.width) ** -0.5
for block in self.text_branch.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_branch_type == "bert" or self.text_branch_type == "roberta":
width = self.text_branch.embeddings.word_embeddings.weight.shape[-1]
elif self.text_branch_type == "bart":
width = self.text_branch.shared.weight.shape[-1]
else:
width = self.text_branch.width
nn.init.constant_(self.logit_scale_a, np.log(1 / 0.07))
nn.init.constant_(self.logit_scale_t, np.log(1 / 0.07))
# deprecated
# if hasattr(self.visual, 'init_parameters'):
# self.visual.init_parameters()
# if self.text_projection is not None:
# nn.init.normal_(self.text_projection, std=width**-0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def encode_audio(self, audio, device):
return self.audio_branch(
audio, mixup_lambda=None, device=device
) # mix lambda needs to add
# def list_of_dict_of_tensor2dict_of_tensor(self, x, device):
# tmp = {}
# for k in x[0].keys():
# tmp[k] = []
# for i in range(len(x)):
# tmp[k].append(x[i][k][:77])
# for k in x[0].keys():
# tmp[k] = torch.tensor(tmp[k]).to(device=device, non_blocking=True)
# return tmp
def encode_text(self, text, device):
if self.text_branch_type == "transformer":
text = text.to(device=device, non_blocking=True)
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_branch(x, attn_mask=self.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = self.text_projection(x[torch.arange(x.shape[0]), text.argmax(dim=-1)])
elif self.text_branch_type == "bert":
# text = self.list_of_dict_of_tensor2dict_of_tensor(text, device)
# text = BatchEncoding(text)
x = self.text_branch(
input_ids=text["input_ids"].to(device=device, non_blocking=True),
attention_mask=text["attention_mask"].to(
device=device, non_blocking=True
),
token_type_ids=text["token_type_ids"].to(
device=device, non_blocking=True
),
)["pooler_output"]
x = self.text_projection(x)
elif self.text_branch_type == "roberta":
x = self.text_branch(
input_ids=text["input_ids"].to(device=device, non_blocking=True),
attention_mask=text["attention_mask"].to(
device=device, non_blocking=True
),
)["pooler_output"]
x = self.text_projection(x)
elif self.text_branch_type == "bart":
x = torch.mean(
self.text_branch(
input_ids=text["input_ids"].to(device=device, non_blocking=True),
attention_mask=text["attention_mask"].to(
device=device, non_blocking=True
),
)["encoder_last_hidden_state"],
axis=1,
)
x = self.text_projection(x)
else:
logging.error(f"Model type {self.text_branch_type} not found")
raise RuntimeError(f"Model type {self.text_branch_type} not found.")
return x
def forward(self, audio, text, device=None):
"""Forward audio and text into the CLAP
Parameters
----------
audio: torch.Tensor (batch_size, audio_length)
the time-domain audio input / the batch of mel_spec and longer list.
text: torch.Tensor () // need to add
the text token input
"""
if device is None:
if audio is not None:
device = audio.device
elif text is not None:
device = text.device
if audio is None and text is None:
# a hack to get the logit scale
return self.logit_scale_a.exp(), self.logit_scale_t.exp()
elif audio is None:
return self.encode_text(text, device=device)
elif text is None:
return self.audio_projection(
self.encode_audio(audio, device=device)["embedding"]
)
audio_features = self.audio_projection(
self.encode_audio(audio, device=device)["embedding"]
)
audio_features = F.normalize(audio_features, dim=-1)
text_features = self.encode_text(text, device=device)
# print("text_features", text_features)
# print("text_features.shape", text_features.shape)
# print("text_features.type", type(text_features))
text_features = F.normalize(text_features, dim=-1)
audio_features_mlp = self.audio_transform(audio_features)
text_features_mlp = self.text_transform(text_features)
# Four outputs: audio features (basic & MLP), text features (basic & MLP)
return (
audio_features,
text_features,
audio_features_mlp,
text_features_mlp,
self.logit_scale_a.exp(),
self.logit_scale_t.exp(),
)
def get_logit_scale(self):
return self.logit_scale_a.exp(), self.logit_scale_t.exp()
def get_text_embedding(self, data):
"""Get the text embedding from the model
Parameters
----------
data: torch.Tensor
a tensor of text embedding
Returns
----------
text_embed: torch.Tensor
a tensor of text_embeds (N, D)
"""
device = next(self.parameters()).device
for k in data:
data[k] = data[k].to(device)
if(len(data[k].size()) < 2):
data[k] = data[k].unsqueeze(0)
text_embeds = self.encode_text(data, device=device)
text_embeds = F.normalize(text_embeds, dim=-1)
return text_embeds
def get_audio_embedding(self, data):
"""Get the audio embedding from the model
Parameters
----------
data: a list of dict
the audio input dict list from 'get_audio_feature' method
Returns
----------
audio_embed: torch.Tensor
a tensor of audio_embeds (N, D)
"""
device = next(self.parameters()).device
input_dict = {}
keys = data[0].keys()
for k in keys:
input_dict[k] = torch.cat([d[k].unsqueeze(0) for d in data], dim=0).to(
device
)
audio_embeds = self.audio_projection(
self.encode_audio(input_dict, device=device)["embedding"]
)
audio_embeds = F.normalize(audio_embeds, dim=-1)
return audio_embeds
def audio_infer(self, audio, hopsize=None, device=None):
"""Forward one audio and produce the audio embedding
Parameters
----------
audio: (audio_length)
the time-domain audio input, notice that it must be only one input
hopsize: int
the overlap hopsize as the sliding window
Returns
----------
output_dict: {
key: [n, (embedding_shape)] if "HTS-AT"
or
key: [(embedding_shape)] if "PANN"
}
the list of key values of the audio branch
"""
assert not self.training, "the inference mode must be run at eval stage"
output_dict = {}
# PANN
if self.audio_cfg.model_type == "PANN":
audio_input = audio.unsqueeze(dim=0)
output_dict[key] = self.encode_audio(audio_input, device=device)[
key
].squeeze(dim=0)
elif self.audio_cfg.model_type == "HTSAT":
# repeat
audio_len = len(audio)
k = self.audio_cfg.clip_samples // audio_len
if k > 1:
audio = audio.repeat(k)
audio_len = len(audio)
if hopsize is None:
hopsize = min(hopsize, audio_len)
if audio_len > self.audio_cfg.clip_samples:
audio_input = [
audio[pos : pos + self.audio_cfg.clip_samples].clone()
for pos in range(
0, audio_len - self.audio_cfg.clip_samples, hopsize
)
]
audio_input.append(audio[-self.audio_cfg.clip_samples :].clone())
audio_input = torch.stack(audio_input)
output_dict[key] = self.encode_audio(audio_input, device=device)[key]
else:
audio_input = audio.unsqueeze(dim=0)
output_dict[key] = self.encode_audio(audio_input, device=device)[
key
].squeeze(dim=0)
return output_dict
def convert_weights_to_fp16(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
if isinstance(l, nn.MultiheadAttention):
for attr in [
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
"in_proj_bias",
"bias_k",
"bias_v",
]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.half()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.half()
model.apply(_convert_weights_to_fp16)
# Ignore the state dict of the vision part
def build_model_from_openai_state_dict(
state_dict: dict, model_cfg, enable_fusion: bool = False, fusion_type: str = "None"
):
embed_dim = model_cfg["embed_dim"]
audio_cfg = model_cfg["audio_cfg"]
text_cfg = model_cfg["text_cfg"]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(
set(
k.split(".")[2]
for k in state_dict
if k.startswith(f"transformer.resblocks")
)
)
audio_cfg = CLAPAudioCfp(**audio_cfg)
text_cfg = CLAPTextCfg(**text_cfg)
model = CLAP(
embed_dim,
audio_cfg=audio_cfg,
text_cfg=text_cfg,
quick_gelu=True, # OpenAI models were trained with QuickGELU
enable_fusion=enable_fusion,
fusion_type=fusion_type,
)
state_dict["logit_scale_a"] = state_dict["logit_scale"]
state_dict["logit_scale_t"] = state_dict["logit_scale"]
pop_keys = list(state_dict.keys())[::]
# pop the visual branch saved weights
for key in pop_keys:
if key.startswith("visual."):
state_dict.pop(key, None)
for key in ["logit_scale", "input_resolution", "context_length", "vocab_size"]:
state_dict.pop(key, None)
# not use fp16
# convert_weights_to_fp16(model)
model.load_state_dict(state_dict, strict=False)
return model.eval()
def trace_model(model, batch_size=256, device=torch.device("cpu")):
model.eval()
audio_length = model.audio_cfg.audio_length
example_audio = torch.ones((batch_size, audio_length), device=device)
example_text = torch.zeros(
(batch_size, model.context_length), dtype=torch.int, device=device
)
model = torch.jit.trace_module(
model,
inputs=dict(
forward=(example_audio, example_text),
encode_text=(example_text,),
encode_image=(example_audio,),
),
)
model.audio_cfg.audio_length = audio_length # Question: what does this do?
return model
|