Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
import evaluate
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
|
5 |
+
import numpy as np
|
6 |
+
import nltk
|
7 |
+
|
8 |
+
nltk.download("punkt")
|
9 |
+
raw_dataset = load_dataset("scientific_papers", "pubmed")
|
10 |
+
metric = evaluate.load("rouge")
|
11 |
+
model_checkpoint = "t5-base"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
13 |
+
|
14 |
+
if model_checkpoint in ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b"]:
|
15 |
+
prefix = "summarize: "
|
16 |
+
else:
|
17 |
+
prefix = ""
|
18 |
+
|
19 |
+
# preprocessing function
|
20 |
+
max_input_length = 256
|
21 |
+
max_target_length = 64
|
22 |
+
def preprocess_function(examples):
|
23 |
+
inputs = [prefix + doc for doc in examples["article"]]
|
24 |
+
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
|
25 |
+
|
26 |
+
# Setup the tokenizer for targets
|
27 |
+
# with tokenizer.as_target_tokenizer():
|
28 |
+
labels = tokenizer(text_target=examples["abstract"], max_length=max_target_length, truncation=True)
|
29 |
+
|
30 |
+
model_inputs["labels"] = labels["input_ids"]
|
31 |
+
return model_inputs
|
32 |
+
|
33 |
+
for split in ["train", "validation", "test"]:
|
34 |
+
raw_dataset[split] = raw_dataset[split].select([n for n in np.random.randint(0, len(raw_dataset[split]) - 1, 200)])
|
35 |
+
|
36 |
+
tokenized_dataset = raw_dataset.map(preprocess_function, batched=True)
|
37 |
+
|
38 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
39 |
+
|
40 |
+
batch_size = 4
|
41 |
+
|
42 |
+
args = Seq2SeqTrainingArguments(
|
43 |
+
f"{model_checkpoint}-scientific_papers",
|
44 |
+
evaluation_strategy="epoch",
|
45 |
+
learning_rate=3e-5,
|
46 |
+
per_device_train_batch_size=batch_size,
|
47 |
+
per_device_eval_batch_size=batch_size,
|
48 |
+
weight_decay=0.01,
|
49 |
+
save_total_limit=3,
|
50 |
+
num_train_epochs=0.5,
|
51 |
+
predict_with_generate=True,
|
52 |
+
# fp16=True,
|
53 |
+
push_to_hub=False,
|
54 |
+
gradient_accumulation_steps=2
|
55 |
+
)
|
56 |
+
|
57 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
58 |
+
|
59 |
+
# computing metrics from the predictions
|
60 |
+
def compute_metrics(eval_pred):
|
61 |
+
predictions, labels = eval_pred
|
62 |
+
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
|
63 |
+
# Replace -100 in the labels as we can't decode them.
|
64 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
65 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
66 |
+
# Rouge expects a newline after each sentence
|
67 |
+
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
|
68 |
+
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]
|
69 |
+
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
70 |
+
# Extract a few results
|
71 |
+
result = {key: value * 100 for key, value in result.items()}
|
72 |
+
# Add mean generated length
|
73 |
+
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
|
74 |
+
result["gen_len"] = np.mean(prediction_lens)
|
75 |
+
return {k: round(v, 4) for k, v in result.items()}
|
76 |
+
|
77 |
+
|
78 |
+
# Define the training and evaluation datasets
|
79 |
+
train_dataset = tokenized_dataset["train"]
|
80 |
+
eval_dataset = tokenized_dataset["validation"]
|
81 |
+
|
82 |
+
# Create the trainer object
|
83 |
+
trainer = Seq2SeqTrainer(
|
84 |
+
model=model,
|
85 |
+
args=args,
|
86 |
+
train_dataset=train_dataset,
|
87 |
+
eval_dataset=eval_dataset,
|
88 |
+
data_collator=data_collator,
|
89 |
+
compute_metrics=compute_metrics,
|
90 |
+
)
|
91 |
+
|
92 |
+
# Train the model
|
93 |
+
trainer.train()
|
94 |
+
|
95 |
+
# Define the input and output interface of the app
|
96 |
+
def summarizer(input_text):
|
97 |
+
inputs = [prefix + input_text]
|
98 |
+
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True, return_tensors="pt")
|
99 |
+
summary_ids = model.generate(
|
100 |
+
input_ids=model_inputs["input_ids"],
|
101 |
+
attention_mask=model_inputs["attention_mask"],
|
102 |
+
num_beams=4,
|
103 |
+
length_penalty=2.0,
|
104 |
+
max_length=max_target_length + 2, # +2 from original because we start at step=1 and stop before max_length
|
105 |
+
repetition_penalty=2.0,
|
106 |
+
early_stopping=True,
|
107 |
+
use_cache=True
|
108 |
+
)
|
109 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
110 |
+
return summary
|
111 |
+
|
112 |
+
# Interface creation and launching
|
113 |
+
iface = gr.Interface(
|
114 |
+
fn=summarizer,
|
115 |
+
inputs=gr.inputs.Textbox(label="Input Text"),
|
116 |
+
outputs=gr.outputs.Textbox(label="Summary"),
|
117 |
+
title="Scientific Paper Summarizer",
|
118 |
+
description="Summarizes scientific papers using a fine-tuned T5 model",
|
119 |
+
theme="gray"
|
120 |
+
)
|
121 |
+
iface.launch()
|
122 |
+
|