# The MIT License # # Copyright (c) OpenAI (https://openai.com) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import contextlib import faulthandler import tempfile import platform import itertools import io import os import sys import time import types import unittest import subprocess import signal import multiprocessing from multiprocessing import Value, Manager from typing import List, Tuple, Union import numpy as np TIMEOUT_LIMIT=240.0 # BCB default is 240.0 @contextlib.contextmanager def swallow_subprocess_output(): """Context manager to swallow stdout and stderr for subprocesses.""" original_popen = subprocess.Popen original_run = subprocess.run def _popen_patch(*args, **kwargs): if 'capture_output' in kwargs and kwargs['capture_output']: # Avoid setting stdout or stderr if capture_output is True kwargs.pop('stdout', None) kwargs.pop('stderr', None) else: kwargs.setdefault('stdout', subprocess.PIPE) kwargs.setdefault('stderr', subprocess.PIPE) return original_popen(*args, **kwargs) def _run_patch(*args, **kwargs): if 'capture_output' in kwargs and kwargs['capture_output']: # Avoid setting stdout or stderr if capture_output is True kwargs.pop('stdout', None) kwargs.pop('stderr', None) else: kwargs.setdefault('stdout', subprocess.PIPE) kwargs.setdefault('stderr', subprocess.PIPE) return original_run(*args, **kwargs) subprocess.Popen = _popen_patch subprocess.run = _run_patch try: yield finally: subprocess.Popen = original_popen subprocess.run = original_run @contextlib.contextmanager def swallow_io(): stream = WriteOnlyStringIO() with contextlib.redirect_stdout(stream): with contextlib.redirect_stderr(stream): with redirect_stdin(stream): with swallow_subprocess_output(): yield @contextlib.contextmanager def time_limit(seconds: float): def signal_handler(signum, frame): raise TimeoutException("Timed out!") signal.setitimer(signal.ITIMER_REAL, seconds) signal.signal(signal.SIGALRM, signal_handler) try: yield finally: signal.setitimer(signal.ITIMER_REAL, 0) @contextlib.contextmanager def create_tempdir(): with tempfile.TemporaryDirectory() as dirname: with chdir(dirname): yield dirname @contextlib.contextmanager def chdir(root): if root == ".": yield return cwd = os.getcwd() os.chdir(root) try: yield except BaseException as exc: raise exc finally: os.chdir(cwd) @contextlib.contextmanager def safe_environment(): # Save original functions original_kill = os.kill original_killpg = os.killpg original_system = os.system original_subprocess_call = subprocess.call original_subprocess_check_output = subprocess.check_output original_subprocess_run = subprocess.run original_subprocess_popen = subprocess.Popen original_os_popen = os.popen original_os_execv = os.execv original_os_execvp = os.execvp original_os_execvpe = os.execvpe current_pid = os.getpid() current_pgid = os.getpgid(current_pid) manager = multiprocessing.Manager() child_pids = manager.list() def safe_kill(pid, sig): try: pgid = os.getpgid(pid) if pid == current_pid or pid in child_pids: original_kill(pid, sig) else: print(f"Prevented attempt to kill PID {pid} with signal {sig}") except ProcessLookupError: pass def safe_killpg(pgid, sig): if pgid == current_pgid or pgid in {os.getpgid(pid) for pid in child_pids}: original_killpg(pgid, sig) else: print(f"Prevented attempt to kill PGID {pgid} with signal {sig}") def safe_system(command): print(f"Intercepted system command: {command}") if 'kill' in command or 'killall' in command: return 0 # Simulate successful execution without doing anything return original_system(command) def safe_subprocess_call(command, *args, **kwargs): print(f"Intercepted subprocess call: {command}") if 'kill' in command or 'killall' in command: return 0 # Simulate successful execution without doing anything return original_subprocess_call(command, *args, **kwargs) def safe_subprocess_check_output(command, *args, **kwargs): print(f"Intercepted command: {command}") if 'ps' in command: return b"" # Simulate no processes found return original_subprocess_check_output(command, *args, **kwargs) def safe_subprocess_run(*args, **kwargs): print(f"Intercepted subprocess run command: {args}") if 'kill' in args[0] or 'killall' in args[0]: return subprocess.CompletedProcess(args, 0, b'', b'') # Simulate successful execution return original_subprocess_run(*args, **kwargs) class SafePopen(subprocess.Popen): def __init__(self, *args, **kwargs): print(f"Intercepted Popen command: {args}") kwargs['preexec_fn'] = os.setsid # Start the process in a new session super().__init__(*args, **kwargs) child_pids.append(self.pid) def communicate(self, *args, **kwargs): try: return super().communicate(*args, **kwargs) except subprocess.TimeoutExpired: print("Timeout expired, intercepted and returning None") return None, None def kill(self): print(f"Intercepted kill call for PID {self.pid}") safe_kill(self.pid, signal.SIGTERM) def terminate(self): print(f"Intercepted terminate call for PID {self.pid}") safe_kill(self.pid, signal.SIGTERM) def safe_os_popen(command): print(f"Intercepted os.popen command: {command}") if 'kill' in command or 'killall' in command: return os.popen('echo Intercepted') return original_os_popen(command) def safe_exec(*args, **kwargs): print(f"Intercepted exec command: {args}") # Override the risky functions with the safe versions os.kill = safe_kill os.killpg = safe_killpg os.system = safe_system subprocess.call = safe_subprocess_call subprocess.check_output = safe_subprocess_check_output subprocess.run = safe_subprocess_run subprocess.Popen = SafePopen os.popen = safe_os_popen os.execv = safe_exec os.execvp = safe_exec os.execvpe = safe_exec try: yield finally: for pid in child_pids: try: os.kill(pid, signal.SIGTERM) for _ in range(10): time.sleep(0.1) try: os.kill(pid, 0) except ProcessLookupError: break else: os.kill(pid, signal.SIGKILL) except ProcessLookupError: pass except Exception as e: print(f"Error handling process {pid}: {e}") os.kill = original_kill os.killpg = original_killpg os.system = original_system subprocess.call = original_subprocess_call subprocess.check_output = original_subprocess_check_output subprocess.run = original_subprocess_run subprocess.Popen = original_subprocess_popen os.popen = original_os_popen os.execv = original_os_execv os.execvp = original_os_execvp os.execvpe = original_os_execvpe class TimeoutException(Exception): pass class WriteOnlyStringIO(io.StringIO): """StringIO that throws an exception when it's read from""" def read(self, *args, **kwargs): raise IOError def readline(self, *args, **kwargs): raise IOError def readlines(self, *args, **kwargs): raise IOError def readable(self, *args, **kwargs): """Returns True if the IO object can be read.""" return False class redirect_stdin(contextlib._RedirectStream): # type: ignore _stream = "stdin" def reliability_guard(max_as_limit, max_data_limit, max_stack_limit): """ This disables various destructive functions and prevents the generated code from interfering with the test (e.g. fork bomb, killing other processes, removing filesystem files, etc.) WARNING This function is NOT a security sandbox. Untrusted code, including, model- generated code, should not be blindly executed outside of one. See the Codex paper for more information about OpenAI's code sandbox, and proceed with caution. """ import os import time from datetime import datetime os.environ['TZ'] = 'UTC' time.tzset() os.environ["OMP_NUM_THREADS"] = "1" os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3" os.environ['TF_ENABLE_ONEDNN_OPTS'] = "0" if max_as_limit and max_data_limit and max_stack_limit: import resource max_as_limit = max_as_limit * 1024 * 1024 max_data_limit = max_data_limit * 1024 * 1024 max_stack_limit = max_stack_limit * 1024 * 1024 resource.setrlimit( resource.RLIMIT_AS, (max_as_limit, max_as_limit) ) resource.setrlimit( resource.RLIMIT_DATA, (max_data_limit, max_data_limit) ) if not platform.uname().system == "Darwin": resource.setrlimit( resource.RLIMIT_STACK, (max_stack_limit, max_stack_limit) ) faulthandler.disable() import builtins builtins.exit = None builtins.quit = None import matplotlib.pyplot as plt plt.close('all') # unbiased estimator from https://github.com/openai/human-eval def estimate_pass_at_k( num_samples: Union[int, List[int], np.ndarray], num_correct: Union[List[int], np.ndarray], k: int, ) -> np.ndarray: """ Estimates pass@k of each problem and returns them in an array. """ def estimator(n: int, c: int, k: int) -> float: """ Calculates 1 - comb(n - c, k) / comb(n, k). """ if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) if isinstance(num_samples, int): num_samples_it = itertools.repeat(num_samples, len(num_correct)) else: assert len(num_samples) == len(num_correct) num_samples_it = iter(num_samples) return np.array( [estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)] ) PASS = "pass" FAIL = "fail" TIMEOUT = "timeout" _SUCCESS = 0 _FAILED = 1 _TIMEOUT = 2 _UNKNOWN = 3 _mapping = {_SUCCESS: PASS, _FAILED: FAIL, _TIMEOUT: TIMEOUT, _UNKNOWN: None} def is_floats(x) -> bool: # check if it is float; List[float]; Tuple[float] if isinstance(x, float): return True if isinstance(x, (list, tuple)): return all(isinstance(i, float) for i in x) if isinstance(x, np.ndarray): return x.dtype == np.float64 or x.dtype == np.float32 return False def unsafe_execute( entry_point: str, code: str, test_code: str, timeout: float, max_as_limit: float, max_data_limit: float, max_stack_limit: float, stat, # Value details, # Array ): with safe_environment(), create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil import builtins rmtree = shutil.rmtree rmdir = os.rmdir chdir = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard(max_as_limit, max_data_limit, max_stack_limit) module_name = "__test__" new_module = types.ModuleType(module_name) # Set necessary attributes for the module new_module.__dict__.update({ '__builtins__': builtins, '__file__': f"{module_name}.py", '__package__': None, '__doc__': None, 'sys': sys, 'os': os, 'environ': os.environ, }) try: full_code = code + "\n" + test_code with swallow_io(): exec(compile(full_code, f"{module_name}.py", 'exec'), new_module.__dict__) sys.modules[module_name] = new_module TestCases = getattr(new_module, 'TestCases') loader = unittest.TestLoader() suite = loader.loadTestsFromTestCase(TestCases) test_result = unittest.TestResult() start_time = time.time() with time_limit(timeout): suite.run(test_result) issues = test_result.failures + test_result.errors for test, trace in issues: details[test.id().split(".")[-1]] = trace stat.value = _SUCCESS except BaseException as e: details["ALL"] = str(e) stat.value = _FAILED # Needed for cleaning up. shutil.rmtree = rmtree os.rmdir = rmdir os.chdir = chdir def untrusted_check( code: str, test_code: str, entry_point: str, max_as_limit: float, max_data_limit: float, max_stack_limit: float, min_time_limit: float = 10, gt_time_limit: float = 60 ) -> Tuple[str, np.ndarray]: min_time_limit = max(min_time_limit, gt_time_limit) timeout = max(os.getenv("BIGCODEBENCH_TIMEOUT_PER_TASK", TIMEOUT_LIMIT), min_time_limit) + 1 # shared memory objects stat = Value("i", _UNKNOWN) manager = Manager() details = manager.dict() p = multiprocessing.Process( target=unsafe_execute, args=( entry_point, code, test_code, timeout, max_as_limit, max_data_limit, max_stack_limit, stat, details, ), ) p.start() p.join(timeout=timeout+1) if p.is_alive(): p.terminate() time.sleep(0.1) if p.is_alive(): p.kill() time.sleep(0.1) stat = _mapping[stat.value] # convert details to a dict details = dict(details) if not stat: stat = TIMEOUT if stat == PASS: if details: stat = FAIL return stat, details def evaluate_files( files: List[str], inputs: List, entry_point: str, min_time_limit: float = 0.1, gt_time_limit_factor: float = 2.0, ) -> List[Tuple[str, List[bool]]]: ret = [] # sort files by the id in name (i.e., "../n.py") files = sorted(files, key=lambda x: int(x.split("/")[-1].split(".")[0])) for file in files: code = open(file, "r").read() stat, det = untrusted_check( code, inputs, entry_point, ) ret.append((stat, det.tolist())) return ret