Spaces:
Runtime error
Runtime error
File size: 4,765 Bytes
af72b72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
'''
Grad-CAM visualization utilities
- Based on https://keras.io/examples/vision/grad_cam/
---
- 2021-12-18 jkang first created
- 2022-01-16
- copied from https://huggingface.co/spaces/jkang/demo-gradcam-imagenet/blob/main/utils.py
- updated for artis/trend classifier
'''
import matplotlib.cm as cm
import os
import re
from glob import glob
import numpy as np
import tensorflow as tf
tfk = tf.keras
K = tfk.backend
# Disable GPU for testing
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
def get_imagenet_classes():
'''Retrieve all 1000 imagenet classes/labels as dictionaries'''
classes = tfk.applications.imagenet_utils.decode_predictions(
np.expand_dims(np.arange(1000), 0), top=1000
)
idx2lab = {cla[2]: cla[1] for cla in classes[0]}
lab2idx = {idx2lab[idx]: idx for idx in idx2lab}
return idx2lab, lab2idx
def search_by_name(str_part):
'''Search imagenet class by partial matching string'''
results = [key for key in list(lab2idx.keys()) if re.search(str_part, key)]
if len(results) != 0:
return [(key, lab2idx[key]) for key in results]
else:
return []
def get_xception_model():
'''Get model to use'''
base_model = tfk.applications.xception.Xception
preprocessor = tfk.applications.xception.preprocess_input
decode_predictions = tfk.applications.xception.decode_predictions
last_conv_layer_name = "block14_sepconv2_act"
model = base_model(weights='imagenet')
grad_model = tfk.models.Model(
inputs=[model.inputs],
outputs=[model.get_layer(last_conv_layer_name).output,
model.output]
)
return model, grad_model, preprocessor, decode_predictions
def get_img_4d_array(image_file, image_size=(299, 299)):
'''Load image as 4d array'''
img = tfk.preprocessing.image.load_img(
image_file, target_size=image_size) # PIL obj
img_array = tfk.preprocessing.image.img_to_array(
img) # float32 numpy array
img_array = np.expand_dims(img_array, axis=0) # 3d -> 4d (1,299,299,3)
return img_array
def make_gradcam_heatmap(grad_model, img_array, pred_idx=None):
'''Generate heatmap to overlay with
- img_array: 4d numpy array
- pred_idx: eg. index out of 1000 imagenet classes
if None, argmax is chosen from prediction
'''
# Get gradient of pred class w.r.t. last conv activation
with tf.GradientTape() as tape:
last_conv_act, predictions = grad_model(img_array)
if pred_idx == None:
pred_idx = tf.argmax(predictions[0])
class_channel = predictions[:, pred_idx] # (1,1000) => (1,)
# d(class_channel/last_conv_act)
grads = tape.gradient(class_channel, last_conv_act)
pooled_grads = tf.reduce_mean(grads, axis=(
0, 1, 2)) # (1,10,10,2048) => (2048,)
# (10,10,2048) x (2048,1) => (10,10,1)
heatmap = last_conv_act[0] @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap) # (10,10)
# Normalize heatmap between 0 and 1
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap, pred_idx.numpy(), predictions.numpy().squeeze()
def align_image_with_heatmap(img_array, heatmap, alpha=0.3, cmap='jet'):
'''Align the image with gradcam heatmap
- img_array: 4d numpy array
- heatmap: output of `def make_gradcam_heatmap()` as 2d numpy array
'''
img_array = img_array.squeeze() # 4d => 3d
# Rescale to 0-255 range
heatmap_scaled = np.uint8(255 * heatmap)
img_array_scaled = np.uint8(255 * img_array)
colormap = cm.get_cmap(cmap)
colors = colormap(np.arange(256))[:, :3] # mapping RGB to heatmap
heatmap_colored = colors[heatmap_scaled] # ? still unclear
# Make RGB colorized heatmap
heatmap_colored = (tfk.preprocessing.image.array_to_img(heatmap_colored) # array => PIL
.resize((img_array.shape[1], img_array.shape[0])))
heatmap_colored = tfk.preprocessing.image.img_to_array(
heatmap_colored) # PIL => array
# Overlay image with heatmap
overlaid_img = heatmap_colored * alpha + img_array_scaled
overlaid_img = tfk.preprocessing.image.array_to_img(overlaid_img)
return overlaid_img
if __name__ == '__main__':
# Test GradCAM
examples = sorted(glob(os.path.join('examples', '*.jpg')))
idx2lab, lab2idx = get_imagenet_classes()
model, grad_model, preprocessor, decode_predictions = get_xception_model()
img_4d_array = get_img_4d_array(examples[0])
img_4d_array = preprocessor(img_4d_array)
heatmap = make_gradcam_heatmap(grad_model, img_4d_array, pred_idx=None)
img_pil = align_image_with_heatmap(
img_4d_array, heatmap, alpha=0.3, cmap='jet')
img_pil.save('test.jpg')
print('done') |