File size: 4,332 Bytes
a95e64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import soundfile as sf
import datetime
from pyctcdecode import BeamSearchDecoderCTC
import torch
import os
import time
import gc
import gradio as gr
import librosa
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM, AutoModelForSeq2SeqLM, AutoTokenizer
from numba import cuda

# load pretrained model
model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("jlonsako/mms-1b-all-AmhLM")


#Define Functions

#convert time into .sbv format
def format_time(seconds):
    # Convert seconds to hh:mm:ss,ms format
    return str(datetime.timedelta(seconds=seconds)).replace('.', ',')

#function to send text strings to be translated into english
def translate_text(
    text: str = "αˆƒαˆŒαˆ‰α‹« αŠ αˆαŠ• α‹΅αˆα… α‹¨αˆšα‹ˆαŒ£αˆ αŒ₯ሩ αŠ₯αŒα‹›α‰₯αˆ”αˆ­αŠ•  αŠ₯αŠ•α‹΄α‰΅",
    project_id: str = "noble-feat-390914"
) -> translate.TranslationServiceClient:
    """Translating Text."""

    client = translate.TranslationServiceClient()

    location = "global"

    parent = f"projects/{project_id}/locations/{location}"

    # Translate text from English to Amharic
    # Detail on supported types can be found here:
    # https://cloud.google.com/translate/docs/supported-formats
    response = client.translate_text(
        request={
            "parent": parent,
            "contents": [text],
            "mime_type": "text/plain",  # mime types: text/plain, text/html
            "source_language_code": "am",
            "target_language_code": "en-US",
        }
    )

    # Display the translation for each input text provided
    #for translation in response.translations:
        #print(f"Translated text: {translation.translated_text}")
        
    return response

#Convert Video/Audio into 16K wav file
def preprocessAudio(audioFile):
    os.system(f"ffmpeg -y -i {audioFile.name} -ar 16000 ./audio.wav")

#Transcribe!!!

def Transcribe(file):
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    start_time = time.time()
    model.load_adapter("amh")

    preprocessAudio(file)
    #os.system(f"ffmpeg -y -i ./July3_2023_Sermon.mov -ar 16000 ./audio.wav")
    block_size = 30

    transcripts = []
    stream = librosa.stream(
        "./audio.wav",
        block_length=block_size,
        frame_length=16000,
        hop_length=16000
    )

    model.to(device)
    print("Model loaded to gpu: Entering transcription phase")

    #Code for timestamping
    encoding_start = 0
    sbv_file = open("subtitle.sbv", "w")

    for speech_segment in stream:  
        if len(speech_segment.shape) > 1:
            speech_segment = speech_segment[:,0] + speech_segment[:,1]
        input_values = processor(speech_segment, sampling_rate=16_000, return_tensors="pt").input_values.to(device)
        with torch.no_grad():
            logits = model(input_values).logits
        if len(logits.shape) == 1:
            print("test")
            logits = logits.unsqueeze(0)
        #predicted_ids = torch.argmax(logits, dim=-1)
        transcription = processor.batch_decode(logits.cpu().numpy()).text
        transcripts.append(transcription[0])

        #Generate timestamps
        encoding_end = encoding_start + block_size
        formatted_start = format_time(encoding_start)
        formatted_end = format_time(encoding_end)

        #Write to the .sbv file
        sbv_file.write(f"{formatted_start},{formatted_end}\n")
        sbv_file.write(f"{transcription[0]}\n\n")
        encoding_start = encoding_end

        # Freeing up memory
        del input_values
        del logits
        #del predicted_ids
        del transcription
        torch.cuda.empty_cache()
        gc.collect()

    # Join all transcripts into a single transcript
    transcript = ' '.join(transcripts)
    sbv_file.close()

    end_time = time.time()
    os.system("rm ./audio.wav")
    print(f"The script ran for {end_time - start_time} seconds.")
    return("subtitle.sbv")
    
demo = gr.Interface(fn=Transcribe, inputs=gr.File(), outputs=gr.File())
#with gr.Blocks() as demo:
    #file_output = gr.Textbox()
    #upload_button = gr.UploadButton("Click to Upload a sermon",
    #                                    file_types=["video", "audio"], file_count="multiple")
    #upload_button.upload(Transcribe, upload_button, file_output)
demo.launch()