Amh-Transcribe / app.py
jlonsako's picture
Fix typo
f7c54a8
raw
history blame
4.63 kB
import soundfile as sf
import datetime
from pyctcdecode import BeamSearchDecoderCTC
import torch
import os
import time
import gc
import gradio as gr
import librosa
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM, AutoModelForSeq2SeqLM, AutoTokenizer
from numba import cuda
# load pretrained model
model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("jlonsako/mms-1b-all-AmhLM")
#Define Functions
#convert time into .sbv format
def format_time(seconds):
# Convert seconds to hh:mm:ss,ms format
return str(datetime.timedelta(seconds=seconds)).replace('.', ',')
#Convert Video/Audio into 16K wav file
def preprocessAudio(audioFile):
os.system(f"ffmpeg -y -i {audioFile.name} -ar 16000 ./audioToConvert.wav")
#Transcribe!!!
def Transcribe(file):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
start_time = time.time()
model.load_adapter("amh")
model.half()
preprocessAudio(file)
block_size = 30
batch_size = 22 # or whatever number you choose
transcripts = []
speech_segments = []
stream = librosa.stream(
"./audioToConvert.wav",
block_length=block_size,
frame_length=16000,
hop_length=16000
)
model.to(device)
print("Model loaded to gpu: Entering transcription phase")
#Code for timestamping
encoding_start = 0
encoding_end = 0
sbv_file = open("subtitle.sbv", "w")
for speech_segment in stream:
if len(speech_segment.shape) > 1:
speech_segment = speech_segment[:,0] + speech_segment[:,1]
speech_segments.append(speech_segment)
if len(speech_segments) == batch_size:
input_values = processor(speech_segments, sampling_rate=16_000, return_tensors="pt", padding=True).input_values.to(device)
input_values = input_values.half()
with torch.no_grad():
logits = model(input_values).logits
if len(logits.shape) == 1:
logits = logits.unsqueeze(0)
#predicted_ids = torch.argmax(logits, dim=-1)
transcriptions = processor.batch_decode(logits.cpu().numpy()).text
transcripts.extend(transcriptions)
# Write to the .sbv file
for i, transcription in enumerate(transcriptions):
encoding_start = encoding_end # Maintain the 'encoding_start' across batches
encoding_end = encoding_start + block_size
formatted_start = format_time(encoding_start)
formatted_end = format_time(encoding_end)
sbv_file.write(f"{formatted_start},{formatted_end}\n")
sbv_file.write(f"{transcription}\n\n")
# Clear the batch
speech_segments = []
# Freeing up memory
del input_values
del logits
del transcriptions
torch.cuda.empty_cache()
gc.collect()
if speech_segments:
input_values = processor(speech_segments, sampling_rate=16_000, return_tensors="pt", padding=True).input_values.to(device)
input_values = input_values.half()
with torch.no_grad():
logits = model(input_values).logits
transcriptions = processor.batch_decode(logits.cpu().numpy()).text
transcripts.extend(transcriptions)
for i in range(len(speech_segments)):
encoding_end = encoding_start + block_size
formatted_start = format_time(encoding_start)
formatted_end = format_time(encoding_end)
sbv_file.write(f"{formatted_start},{formatted_end}\n")
sbv_file.write(f"{transcriptions[i]}\n\n")
encoding_start = encoding_end
# Freeing up memory
del input_values
del logits
del transcriptions
torch.cuda.empty_cache()
gc.collect()
# Join all transcripts into a single transcript
transcript = ' '.join(transcripts)
sbv_file.close()
end_time = time.time()
print(f"The script ran for {end_time - start_time} seconds.")
return("./subtitle.sbv")
demo = gr.Interface(fn=Transcribe, inputs=gr.File(label="Upload an audio file of Amharic content"), outputs=gr.File(label="Download .sbv transcription")
title="Amharic Audio Transcription"
description="This application uses Meta MMS and a custom kenLM model to transcribe Amharic Audio files of arbitrary length into .sbv files. Upload an Amharic audio file and get your transcription!"
)
demo.launch()