Spaces:
Sleeping
Sleeping
import soundfile as sf | |
import datetime | |
from pyctcdecode import BeamSearchDecoderCTC | |
import torch | |
import os | |
import time | |
import gc | |
import gradio as gr | |
import librosa | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM, AutoModelForSeq2SeqLM, AutoTokenizer | |
from numba import cuda | |
# load pretrained model | |
model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all") | |
processor = Wav2Vec2ProcessorWithLM.from_pretrained("jlonsako/mms-1b-all-AmhLM") | |
#Define Functions | |
#convert time into .sbv format | |
def format_time(seconds): | |
# Convert seconds to hh:mm:ss,ms format | |
return str(datetime.timedelta(seconds=seconds)).replace('.', ',') | |
#Convert Video/Audio into 16K wav file | |
def preprocessAudio(audioFile): | |
os.system(f"ffmpeg -y -i {audioFile.name} -ar 16000 ./audioToConvert.wav") | |
#Transcribe!!! | |
def Transcribe(file): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
start_time = time.time() | |
model.load_adapter("amh") | |
model.half() | |
preprocessAudio(file) | |
block_size = 30 | |
batch_size = 22 # or whatever number you choose | |
transcripts = [] | |
speech_segments = [] | |
stream = librosa.stream( | |
"./audioToConvert.wav", | |
block_length=block_size, | |
frame_length=16000, | |
hop_length=16000 | |
) | |
model.to(device) | |
print("Model loaded to gpu: Entering transcription phase") | |
#Code for timestamping | |
encoding_start = 0 | |
encoding_end = 0 | |
sbv_file = open("subtitle.sbv", "w") | |
for speech_segment in stream: | |
if len(speech_segment.shape) > 1: | |
speech_segment = speech_segment[:,0] + speech_segment[:,1] | |
speech_segments.append(speech_segment) | |
if len(speech_segments) == batch_size: | |
input_values = processor(speech_segments, sampling_rate=16_000, return_tensors="pt", padding=True).input_values.to(device) | |
input_values = input_values.half() | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
if len(logits.shape) == 1: | |
logits = logits.unsqueeze(0) | |
#predicted_ids = torch.argmax(logits, dim=-1) | |
transcriptions = processor.batch_decode(logits.cpu().numpy()).text | |
transcripts.extend(transcriptions) | |
# Write to the .sbv file | |
for i, transcription in enumerate(transcriptions): | |
encoding_start = encoding_end # Maintain the 'encoding_start' across batches | |
encoding_end = encoding_start + block_size | |
formatted_start = format_time(encoding_start) | |
formatted_end = format_time(encoding_end) | |
sbv_file.write(f"{formatted_start},{formatted_end}\n") | |
sbv_file.write(f"{transcription}\n\n") | |
# Clear the batch | |
speech_segments = [] | |
# Freeing up memory | |
del input_values | |
del logits | |
del transcriptions | |
torch.cuda.empty_cache() | |
gc.collect() | |
if speech_segments: | |
input_values = processor(speech_segments, sampling_rate=16_000, return_tensors="pt", padding=True).input_values.to(device) | |
input_values = input_values.half() | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
transcriptions = processor.batch_decode(logits.cpu().numpy()).text | |
transcripts.extend(transcriptions) | |
for i in range(len(speech_segments)): | |
encoding_end = encoding_start + block_size | |
formatted_start = format_time(encoding_start) | |
formatted_end = format_time(encoding_end) | |
sbv_file.write(f"{formatted_start},{formatted_end}\n") | |
sbv_file.write(f"{transcriptions[i]}\n\n") | |
encoding_start = encoding_end | |
# Freeing up memory | |
del input_values | |
del logits | |
del transcriptions | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Join all transcripts into a single transcript | |
transcript = ' '.join(transcripts) | |
sbv_file.close() | |
end_time = time.time() | |
print(f"The script ran for {end_time - start_time} seconds.") | |
return("./subtitle.sbv") | |
demo = gr.Interface(fn=Transcribe, inputs=gr.File(label="Upload an audio file of Amharic content"), outputs=gr.File(label="Download .sbv transcription") | |
title="Amharic Audio Transcription" | |
description="This application uses Meta MMS and a custom kenLM model to transcribe Amharic Audio files of arbitrary length into .sbv files. Upload an Amharic audio file and get your transcription!" | |
) | |
demo.launch() | |