Spaces:
Sleeping
Sleeping
jtlonsako
commited on
Commit
•
18680df
1
Parent(s):
43541ee
Updated to use Meta's language model
Browse files
app.py
CHANGED
@@ -2,18 +2,65 @@ import soundfile as sf
|
|
2 |
import datetime
|
3 |
from pyctcdecode import BeamSearchDecoderCTC
|
4 |
import torch
|
|
|
5 |
import os
|
6 |
import time
|
7 |
import gc
|
8 |
import gradio as gr
|
9 |
import librosa
|
10 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM, AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
|
11 |
from numba import cuda
|
12 |
|
13 |
# load pretrained model
|
14 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all")
|
15 |
-
processor =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
#Define Functions
|
19 |
|
@@ -31,11 +78,11 @@ def Transcribe(file):
|
|
31 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
32 |
start_time = time.time()
|
33 |
model.load_adapter("amh")
|
34 |
-
|
35 |
|
36 |
preprocessAudio(file)
|
37 |
block_size = 30
|
38 |
-
batch_size =
|
39 |
|
40 |
transcripts = []
|
41 |
speech_segments = []
|
@@ -48,71 +95,91 @@ def Transcribe(file):
|
|
48 |
)
|
49 |
|
50 |
model.to(device)
|
51 |
-
print("Model loaded to
|
52 |
|
53 |
#Code for timestamping
|
54 |
encoding_start = 0
|
55 |
encoding_end = 0
|
56 |
sbv_file = open("subtitle.sbv", "w")
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
if len(speech_segment.shape) > 1:
|
60 |
speech_segment = speech_segment[:,0] + speech_segment[:,1]
|
61 |
-
speech_segments.append(speech_segment)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
with torch.no_grad():
|
67 |
-
logits = model(input_values).logits
|
68 |
if len(logits.shape) == 1:
|
69 |
logits = logits.unsqueeze(0)
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
# Write to the .sbv file
|
75 |
-
for i, transcription in enumerate(transcriptions):
|
76 |
-
encoding_start = encoding_end # Maintain the 'encoding_start' across batches
|
77 |
encoding_end = encoding_start + block_size
|
78 |
formatted_start = format_time(encoding_start)
|
79 |
formatted_end = format_time(encoding_end)
|
80 |
sbv_file.write(f"{formatted_start},{formatted_end}\n")
|
81 |
sbv_file.write(f"{transcription}\n\n")
|
82 |
|
83 |
-
|
84 |
-
speech_segments = []
|
85 |
|
86 |
# Freeing up memory
|
87 |
del input_values
|
88 |
del logits
|
89 |
-
del
|
90 |
torch.cuda.empty_cache()
|
91 |
gc.collect()
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
del logits
|
112 |
-
del transcriptions
|
113 |
-
torch.cuda.empty_cache()
|
114 |
-
gc.collect()
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
# Join all transcripts into a single transcript
|
118 |
transcript = ' '.join(transcripts)
|
|
|
2 |
import datetime
|
3 |
from pyctcdecode import BeamSearchDecoderCTC
|
4 |
import torch
|
5 |
+
import json
|
6 |
import os
|
7 |
import time
|
8 |
import gc
|
9 |
import gradio as gr
|
10 |
import librosa
|
11 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM, AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
from torchaudio.models.decoder import ctc_decoder
|
14 |
from numba import cuda
|
15 |
|
16 |
# load pretrained model
|
17 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all")
|
18 |
+
processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
19 |
+
|
20 |
+
lm_decoding_config = {}
|
21 |
+
lm_decoding_configfile = hf_hub_download(
|
22 |
+
repo_id="facebook/mms-cclms",
|
23 |
+
filename="decoding_config.json",
|
24 |
+
subfolder="mms-1b-all",
|
25 |
+
)
|
26 |
+
|
27 |
+
with open(lm_decoding_configfile) as f:
|
28 |
+
lm_decoding_config = json.loads(f.read())
|
29 |
+
|
30 |
+
# allow language model decoding for "eng"
|
31 |
+
|
32 |
+
decoding_config = lm_decoding_config["amh"]
|
33 |
+
|
34 |
+
lm_file = hf_hub_download(
|
35 |
+
repo_id="facebook/mms-cclms",
|
36 |
+
filename=decoding_config["lmfile"].rsplit("/", 1)[1],
|
37 |
+
subfolder=decoding_config["lmfile"].rsplit("/", 1)[0],
|
38 |
+
)
|
39 |
+
token_file = hf_hub_download(
|
40 |
+
repo_id="facebook/mms-cclms",
|
41 |
+
filename=decoding_config["tokensfile"].rsplit("/", 1)[1],
|
42 |
+
subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0],
|
43 |
+
)
|
44 |
+
lexicon_file = None
|
45 |
+
if decoding_config["lexiconfile"] is not None:
|
46 |
+
lexicon_file = hf_hub_download(
|
47 |
+
repo_id="facebook/mms-cclms",
|
48 |
+
filename=decoding_config["lexiconfile"].rsplit("/", 1)[1],
|
49 |
+
subfolder=decoding_config["lexiconfile"].rsplit("/", 1)[0],
|
50 |
+
)
|
51 |
|
52 |
+
beam_search_decoder = ctc_decoder(
|
53 |
+
lexicon="./vocab_correct_cleaned.txt",
|
54 |
+
tokens=token_file,
|
55 |
+
lm=lm_file,
|
56 |
+
nbest=1,
|
57 |
+
beam_size=500,
|
58 |
+
beam_size_token=50,
|
59 |
+
lm_weight=float(decoding_config["lmweight"]),
|
60 |
+
word_score=float(decoding_config["wordscore"]),
|
61 |
+
sil_score=float(decoding_config["silweight"]),
|
62 |
+
blank_token="<s>",
|
63 |
+
)
|
64 |
|
65 |
#Define Functions
|
66 |
|
|
|
78 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
79 |
start_time = time.time()
|
80 |
model.load_adapter("amh")
|
81 |
+
processor.tokenizer.set_target_lang("amh")
|
82 |
|
83 |
preprocessAudio(file)
|
84 |
block_size = 30
|
85 |
+
batch_size = 8 # or whatever number you choose
|
86 |
|
87 |
transcripts = []
|
88 |
speech_segments = []
|
|
|
95 |
)
|
96 |
|
97 |
model.to(device)
|
98 |
+
print(f"Model loaded to {device}: Entering transcription phase")
|
99 |
|
100 |
#Code for timestamping
|
101 |
encoding_start = 0
|
102 |
encoding_end = 0
|
103 |
sbv_file = open("subtitle.sbv", "w")
|
104 |
|
105 |
+
# Define batch size
|
106 |
+
batch_size = 11
|
107 |
+
|
108 |
+
# Create an empty list to hold batches
|
109 |
+
batch = []
|
110 |
+
|
111 |
+
for speech_segment in stream:
|
112 |
if len(speech_segment.shape) > 1:
|
113 |
speech_segment = speech_segment[:,0] + speech_segment[:,1]
|
|
|
114 |
|
115 |
+
# Add the current speech segment to the batch
|
116 |
+
batch.append(speech_segment)
|
117 |
+
|
118 |
+
# If the batch is full, process it
|
119 |
+
if len(batch) == batch_size:
|
120 |
+
# Concatenate all segments in the batch along the time axis
|
121 |
+
input_values = processor(batch, sampling_rate=16_000, return_tensors="pt")
|
122 |
+
input_values = input_values.to(device)
|
123 |
with torch.no_grad():
|
124 |
+
logits = model(**input_values).logits
|
125 |
if len(logits.shape) == 1:
|
126 |
logits = logits.unsqueeze(0)
|
127 |
+
beam_search_result = beam_search_decoder(logits.to("cpu"))
|
128 |
+
|
129 |
+
# Transcribe each segment in the batch
|
130 |
+
for i in range(batch_size):
|
131 |
+
transcription = " ".join(beam_search_result[i][0].words).strip()
|
132 |
+
print(transcription)
|
133 |
+
transcripts.append(transcription)
|
134 |
|
|
|
|
|
|
|
135 |
encoding_end = encoding_start + block_size
|
136 |
formatted_start = format_time(encoding_start)
|
137 |
formatted_end = format_time(encoding_end)
|
138 |
sbv_file.write(f"{formatted_start},{formatted_end}\n")
|
139 |
sbv_file.write(f"{transcription}\n\n")
|
140 |
|
141 |
+
encoding_start = encoding_end
|
|
|
142 |
|
143 |
# Freeing up memory
|
144 |
del input_values
|
145 |
del logits
|
146 |
+
del transcription
|
147 |
torch.cuda.empty_cache()
|
148 |
gc.collect()
|
149 |
|
150 |
+
# Clear the batch
|
151 |
+
batch = []
|
152 |
+
|
153 |
+
if batch:
|
154 |
+
# Concatenate all segments in the batch along the time axis
|
155 |
+
input_values = processor(batch, sampling_rate=16_000, return_tensors="pt")
|
156 |
+
input_values = input_values.to(device)
|
157 |
+
with torch.no_grad():
|
158 |
+
logits = model(**input_values).logits
|
159 |
+
if len(logits.shape) == 1:
|
160 |
+
logits = logits.unsqueeze(0)
|
161 |
+
beam_search_result = beam_search_decoder(logits.to("cpu"))
|
162 |
+
|
163 |
+
# Transcribe each segment in the batch
|
164 |
+
for i in range(batch_size):
|
165 |
+
transcription = " ".join(beam_search_result[i][0].words).strip()
|
166 |
+
print(transcription)
|
167 |
+
transcripts.append(transcription)
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
encoding_end = encoding_start + block_size
|
170 |
+
formatted_start = format_time(encoding_start)
|
171 |
+
formatted_end = format_time(encoding_end)
|
172 |
+
sbv_file.write(f"{formatted_start},{formatted_end}\n")
|
173 |
+
sbv_file.write(f"{transcription}\n\n")
|
174 |
+
|
175 |
+
encoding_start = encoding_end
|
176 |
+
|
177 |
+
# Freeing up memory
|
178 |
+
del input_values
|
179 |
+
del logits
|
180 |
+
del transcription
|
181 |
+
torch.cuda.empty_cache()
|
182 |
+
gc.collect()
|
183 |
|
184 |
# Join all transcripts into a single transcript
|
185 |
transcript = ' '.join(transcripts)
|