Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -67,7 +67,7 @@ def preprocessAudio(audioFile):
|
|
67 |
if isinstance(audioFile, str): # If audioFile is a string (filepath)
|
68 |
os.system(f"ffmpeg -y -i {audioFile} -ar 16000 ./audioToConvert.wav")
|
69 |
else: # If audioFile is an object with a name attribute
|
70 |
-
os.system(f"ffmpeg -y -i {audioFile.name} -ar 16000 ./
|
71 |
|
72 |
#Transcribe!!!
|
73 |
def Transcribe(file):
|
@@ -191,6 +191,127 @@ def Transcribe(file):
|
|
191 |
error_log.write(f"Exception occurred: {e}")
|
192 |
error_log.close()
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
demo = gr.Blocks()
|
195 |
|
196 |
with demo:
|
|
|
67 |
if isinstance(audioFile, str): # If audioFile is a string (filepath)
|
68 |
os.system(f"ffmpeg -y -i {audioFile} -ar 16000 ./audioToConvert.wav")
|
69 |
else: # If audioFile is an object with a name attribute
|
70 |
+
os.system(f"ffmpeg -y -i {audioFile.name} -ar 16000 ./audioToConvert.wav")
|
71 |
|
72 |
#Transcribe!!!
|
73 |
def Transcribe(file):
|
|
|
191 |
error_log.write(f"Exception occurred: {e}")
|
192 |
error_log.close()
|
193 |
|
194 |
+
|
195 |
+
#Transcribe!!!
|
196 |
+
def TranscribeMic(file):
|
197 |
+
try:
|
198 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
199 |
+
start_time = time.time()
|
200 |
+
model.load_adapter("amh")
|
201 |
+
processor.tokenizer.set_target_lang("amh")
|
202 |
+
|
203 |
+
preprocessAudio(file)
|
204 |
+
block_size = 30
|
205 |
+
batch_size = 1
|
206 |
+
|
207 |
+
transcripts = []
|
208 |
+
speech_segments = []
|
209 |
+
|
210 |
+
stream = librosa.stream(
|
211 |
+
"./audioToConvert.wav",
|
212 |
+
block_length=block_size,
|
213 |
+
frame_length=16000,
|
214 |
+
hop_length=16000
|
215 |
+
)
|
216 |
+
|
217 |
+
model.to(device)
|
218 |
+
print(f"Model loaded to {device}: Entering transcription phase")
|
219 |
+
|
220 |
+
#Code for timestamping
|
221 |
+
encoding_start = 0
|
222 |
+
encoding_end = 0
|
223 |
+
sbv_file = open(f"microphone_subtitle.sbv", "w")
|
224 |
+
transcription_file = open(f"microphone_transcription.txt", "w")
|
225 |
+
|
226 |
+
# Create an empty list to hold batches
|
227 |
+
batch = []
|
228 |
+
|
229 |
+
for speech_segment in stream:
|
230 |
+
if len(speech_segment.shape) > 1:
|
231 |
+
speech_segment = speech_segment[:,0] + speech_segment[:,1]
|
232 |
+
|
233 |
+
# Add the current speech segment to the batch
|
234 |
+
batch.append(speech_segment)
|
235 |
+
|
236 |
+
# If the batch is full, process it
|
237 |
+
if len(batch) == batch_size:
|
238 |
+
# Concatenate all segments in the batch along the time axis
|
239 |
+
input_values = processor(batch, sampling_rate=16_000, return_tensors="pt", padding=True)
|
240 |
+
input_values = input_values.to(device)
|
241 |
+
with torch.no_grad():
|
242 |
+
logits = model(**input_values).logits
|
243 |
+
if len(logits.shape) == 1:
|
244 |
+
logits = logits.unsqueeze(0)
|
245 |
+
beam_search_result = beam_search_decoder(logits.to("cpu"))
|
246 |
+
|
247 |
+
# Transcribe each segment in the batch
|
248 |
+
for i in range(batch_size):
|
249 |
+
transcription = " ".join(beam_search_result[i][0].words).strip()
|
250 |
+
transcripts.append(transcription)
|
251 |
+
|
252 |
+
encoding_end = encoding_start + block_size
|
253 |
+
formatted_start = format_time(encoding_start)
|
254 |
+
formatted_end = format_time(encoding_end)
|
255 |
+
sbv_file.write(f"{formatted_start},{formatted_end}\n")
|
256 |
+
sbv_file.write(f"{transcription}\n\n")
|
257 |
+
|
258 |
+
encoding_start = encoding_end
|
259 |
+
|
260 |
+
# Freeing up memory
|
261 |
+
del input_values
|
262 |
+
del logits
|
263 |
+
del transcription
|
264 |
+
torch.cuda.empty_cache()
|
265 |
+
gc.collect()
|
266 |
+
|
267 |
+
# Clear the batch
|
268 |
+
batch = []
|
269 |
+
|
270 |
+
if batch:
|
271 |
+
# Concatenate all segments in the batch along the time axis
|
272 |
+
input_values = processor(batch, sampling_rate=16_000, return_tensors="pt", padding=True)
|
273 |
+
input_values = input_values.to(device)
|
274 |
+
with torch.no_grad():
|
275 |
+
logits = model(**input_values).logits
|
276 |
+
if len(logits.shape) == 1:
|
277 |
+
logits = logits.unsqueeze(0)
|
278 |
+
beam_search_result = beam_search_decoder(logits.to("cpu"))
|
279 |
+
|
280 |
+
# Transcribe each segment in the batch
|
281 |
+
for i in range(len(batch)):
|
282 |
+
transcription = " ".join(beam_search_result[i][0].words).strip()
|
283 |
+
print(transcription)
|
284 |
+
transcripts.append(transcription)
|
285 |
+
|
286 |
+
encoding_end = encoding_start + block_size
|
287 |
+
formatted_start = format_time(encoding_start)
|
288 |
+
formatted_end = format_time(encoding_end)
|
289 |
+
sbv_file.write(f"{formatted_start},{formatted_end}\n")
|
290 |
+
sbv_file.write(f"{transcription}\n\n")
|
291 |
+
|
292 |
+
encoding_start = encoding_end
|
293 |
+
|
294 |
+
# Freeing up memory
|
295 |
+
del input_values
|
296 |
+
del logits
|
297 |
+
del transcription
|
298 |
+
torch.cuda.empty_cache()
|
299 |
+
gc.collect()
|
300 |
+
|
301 |
+
# Join all transcripts into a single transcript
|
302 |
+
transcript = ' '.join(transcripts)
|
303 |
+
transcription_file.write(f"{transcript}")
|
304 |
+
sbv_file.close()
|
305 |
+
transcription_file.close()
|
306 |
+
|
307 |
+
end_time = time.time()
|
308 |
+
print(f"The script ran for {end_time - start_time} seconds.")
|
309 |
+
return([f"./microphone_subtitle.sbv", f"./microphone_transcription.txt"])
|
310 |
+
except Exception as e:
|
311 |
+
error_log = open("error_log.txt", "w")
|
312 |
+
error_log.write(f"Exception occurred: {e}")
|
313 |
+
error_log.close()
|
314 |
+
|
315 |
demo = gr.Blocks()
|
316 |
|
317 |
with demo:
|