import soundfile as sf import datetime from pyctcdecode import BeamSearchDecoderCTC import torch import json import os import time import gc import gradio as gr import librosa from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM, AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor from huggingface_hub import hf_hub_download from torchaudio.models.decoder import ctc_decoder from numba import cuda # load pretrained model model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all") processor = AutoProcessor.from_pretrained("facebook/mms-1b-all") lm_decoding_config = {} lm_decoding_configfile = hf_hub_download( repo_id="facebook/mms-cclms", filename="decoding_config.json", subfolder="mms-1b-all", ) with open(lm_decoding_configfile) as f: lm_decoding_config = json.loads(f.read()) # allow language model decoding for "eng" decoding_config = lm_decoding_config["amh"] lm_file = hf_hub_download( repo_id="facebook/mms-cclms", filename=decoding_config["lmfile"].rsplit("/", 1)[1], subfolder=decoding_config["lmfile"].rsplit("/", 1)[0], ) token_file = hf_hub_download( repo_id="facebook/mms-cclms", filename=decoding_config["tokensfile"].rsplit("/", 1)[1], subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0], ) beam_search_decoder = ctc_decoder( lexicon="./vocab_correct_cleaned.txt", tokens=token_file, lm=lm_file, nbest=1, beam_size=500, beam_size_token=50, lm_weight=float(decoding_config["lmweight"]), word_score=float(decoding_config["wordscore"]), sil_score=float(decoding_config["silweight"]), blank_token="", ) #Define Functions #convert time into .sbv format def format_time(seconds): # Convert seconds to hh:mm:ss,ms format return str(datetime.timedelta(seconds=seconds)).replace('.', ',') #Convert Video/Audio into 16K wav file def preprocessAudio(audioFile): os.system(f"ffmpeg -y -i {audioFile.name} -ar 16000 ./audioToConvert.wav") #Transcribe!!! def Transcribe(file): device = "cuda:0" if torch.cuda.is_available() else "cpu" start_time = time.time() model.load_adapter("amh") processor.tokenizer.set_target_lang("amh") preprocessAudio(file) block_size = 30 batch_size = 8 # or whatever number you choose transcripts = [] speech_segments = [] stream = librosa.stream( "./audioToConvert.wav", block_length=block_size, frame_length=16000, hop_length=16000 ) model.to(device) print(f"Model loaded to {device}: Entering transcription phase") #Code for timestamping encoding_start = 0 encoding_end = 0 sbv_file = open("subtitle.sbv", "w") # Define batch size batch_size = 11 # Create an empty list to hold batches batch = [] for speech_segment in stream: if len(speech_segment.shape) > 1: speech_segment = speech_segment[:,0] + speech_segment[:,1] # Add the current speech segment to the batch batch.append(speech_segment) # If the batch is full, process it if len(batch) == batch_size: # Concatenate all segments in the batch along the time axis input_values = processor(batch, sampling_rate=16_000, return_tensors="pt") input_values = input_values.to(device) with torch.no_grad(): logits = model(**input_values).logits if len(logits.shape) == 1: logits = logits.unsqueeze(0) beam_search_result = beam_search_decoder(logits.to("cpu")) # Transcribe each segment in the batch for i in range(batch_size): transcription = " ".join(beam_search_result[i][0].words).strip() print(transcription) transcripts.append(transcription) encoding_end = encoding_start + block_size formatted_start = format_time(encoding_start) formatted_end = format_time(encoding_end) sbv_file.write(f"{formatted_start},{formatted_end}\n") sbv_file.write(f"{transcription}\n\n") encoding_start = encoding_end # Freeing up memory del input_values del logits del transcription torch.cuda.empty_cache() gc.collect() # Clear the batch batch = [] if batch: # Concatenate all segments in the batch along the time axis input_values = processor(batch, sampling_rate=16_000, return_tensors="pt") input_values = input_values.to(device) with torch.no_grad(): logits = model(**input_values).logits if len(logits.shape) == 1: logits = logits.unsqueeze(0) beam_search_result = beam_search_decoder(logits.to("cpu")) # Transcribe each segment in the batch for i in range(len(batch)): transcription = " ".join(beam_search_result[i][0].words).strip() print(transcription) transcripts.append(transcription) encoding_end = encoding_start + block_size formatted_start = format_time(encoding_start) formatted_end = format_time(encoding_end) sbv_file.write(f"{formatted_start},{formatted_end}\n") sbv_file.write(f"{transcription}\n\n") encoding_start = encoding_end # Freeing up memory del input_values del logits del transcription torch.cuda.empty_cache() gc.collect() # Join all transcripts into a single transcript transcript = ' '.join(transcripts) sbv_file.close() end_time = time.time() print(f"The script ran for {end_time - start_time} seconds.") return("./subtitle.sbv") demo = gr.Interface(fn=Transcribe, inputs=gr.File(label="Upload an audio file of Amharic content"), outputs=gr.File(label="Download .sbv transcription"), title="Amharic Audio Transcription", description="This application uses Meta MMS and a custom kenLM model to transcribe Amharic Audio files of arbitrary length into .sbv files. Upload an Amharic audio file and get your transcription! \n(Note: This is only a rough implementation of Meta's MMS for audio transcription, you should manually edit files after transcription has completed.)" ) demo.launch()