Spaces:
Runtime error
Runtime error
File size: 8,501 Bytes
a8c39f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import sys
import time
from scipy import signal
from scipy.io import wavfile
import numpy as np
import concurrent.futures
from tqdm import tqdm
import json
from distutils.util import strtobool
import librosa
import multiprocessing
import noisereduce as nr
now_directory = os.getcwd()
sys.path.append(now_directory)
from rvc.lib.utils import load_audio
from rvc.train.preprocess.slicer import Slicer
# Remove colab logs
import logging
logging.getLogger("numba.core.byteflow").setLevel(logging.WARNING)
logging.getLogger("numba.core.ssa").setLevel(logging.WARNING)
logging.getLogger("numba.core.interpreter").setLevel(logging.WARNING)
# Constants
OVERLAP = 0.3
MAX_AMPLITUDE = 0.9
ALPHA = 0.75
HIGH_PASS_CUTOFF = 48
SAMPLE_RATE_16K = 16000
class PreProcess:
def __init__(self, sr: int, exp_dir: str, per: float):
self.slicer = Slicer(
sr=sr,
threshold=-42,
min_length=1500,
min_interval=400,
hop_size=15,
max_sil_kept=500,
)
self.sr = sr
self.b_high, self.a_high = signal.butter(
N=5, Wn=HIGH_PASS_CUTOFF, btype="high", fs=self.sr
)
self.per = per
self.exp_dir = exp_dir
self.device = "cpu"
self.gt_wavs_dir = os.path.join(exp_dir, "sliced_audios")
self.wavs16k_dir = os.path.join(exp_dir, "sliced_audios_16k")
os.makedirs(self.gt_wavs_dir, exist_ok=True)
os.makedirs(self.wavs16k_dir, exist_ok=True)
def _normalize_audio(self, audio: np.ndarray):
tmp_max = np.abs(audio).max()
if tmp_max > 2.5:
return None
return (audio / tmp_max * (MAX_AMPLITUDE * ALPHA)) + (1 - ALPHA) * audio
def process_audio_segment(
self,
normalized_audio: np.ndarray,
sid: int,
idx0: int,
idx1: int,
):
if normalized_audio is None:
print(f"{sid}-{idx0}-{idx1}-filtered")
return
wavfile.write(
os.path.join(self.gt_wavs_dir, f"{sid}_{idx0}_{idx1}.wav"),
self.sr,
normalized_audio.astype(np.float32),
)
audio_16k = librosa.resample(
normalized_audio, orig_sr=self.sr, target_sr=SAMPLE_RATE_16K
)
wavfile.write(
os.path.join(self.wavs16k_dir, f"{sid}_{idx0}_{idx1}.wav"),
SAMPLE_RATE_16K,
audio_16k.astype(np.float32),
)
def process_audio(
self,
path: str,
idx0: int,
sid: int,
cut_preprocess: bool,
process_effects: bool,
noise_reduction: bool,
reduction_strength: float,
):
audio_length = 0
try:
audio = load_audio(path, self.sr)
audio_length = librosa.get_duration(y=audio, sr=self.sr)
if process_effects:
audio = signal.lfilter(self.b_high, self.a_high, audio)
audio = self._normalize_audio(audio)
if noise_reduction:
audio = nr.reduce_noise(
y=audio, sr=self.sr, prop_decrease=reduction_strength
)
idx1 = 0
if cut_preprocess:
for audio_segment in self.slicer.slice(audio):
i = 0
while True:
start = int(self.sr * (self.per - OVERLAP) * i)
i += 1
if len(audio_segment[start:]) > (self.per + OVERLAP) * self.sr:
tmp_audio = audio_segment[
start : start + int(self.per * self.sr)
]
self.process_audio_segment(
tmp_audio,
sid,
idx0,
idx1,
)
idx1 += 1
else:
tmp_audio = audio_segment[start:]
self.process_audio_segment(
tmp_audio,
sid,
idx0,
idx1,
)
idx1 += 1
break
else:
self.process_audio_segment(
audio,
sid,
idx0,
idx1,
)
except Exception as error:
print(f"Error processing audio: {error}")
return audio_length
def format_duration(seconds):
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
return f"{hours:02}:{minutes:02}:{seconds:02}"
def save_dataset_duration(file_path, dataset_duration):
try:
with open(file_path, "r") as f:
data = json.load(f)
except FileNotFoundError:
data = {}
formatted_duration = format_duration(dataset_duration)
new_data = {
"total_dataset_duration": formatted_duration,
"total_seconds": dataset_duration,
}
data.update(new_data)
with open(file_path, "w") as f:
json.dump(data, f, indent=4)
def process_audio_wrapper(args):
pp, file, cut_preprocess, process_effects, noise_reduction, reduction_strength = (
args
)
file_path, idx0, sid = file
return pp.process_audio(
file_path,
idx0,
sid,
cut_preprocess,
process_effects,
noise_reduction,
reduction_strength,
)
def preprocess_training_set(
input_root: str,
sr: int,
num_processes: int,
exp_dir: str,
per: float,
cut_preprocess: bool,
process_effects: bool,
noise_reduction: bool,
reduction_strength: float,
):
start_time = time.time()
pp = PreProcess(sr, exp_dir, per)
print(f"Starting preprocess with {num_processes} processes...")
files = []
idx = 0
for root, _, filenames in os.walk(input_root):
try:
sid = 0 if root == input_root else int(os.path.basename(root))
for f in filenames:
if f.lower().endswith((".wav", ".mp3", ".flac", ".ogg")):
files.append((os.path.join(root, f), idx, sid))
idx += 1
except ValueError:
print(
f'Speaker ID folder is expected to be integer, got "{os.path.basename(root)}" instead.'
)
# print(f"Number of files: {len(files)}")
audio_length = []
with tqdm(total=len(files)) as pbar:
with concurrent.futures.ProcessPoolExecutor(
max_workers=num_processes
) as executor:
futures = [
executor.submit(
process_audio_wrapper,
(
pp,
file,
cut_preprocess,
process_effects,
noise_reduction,
reduction_strength,
),
)
for file in files
]
for future in concurrent.futures.as_completed(futures):
audio_length.append(future.result())
pbar.update(1)
audio_length = sum(audio_length)
save_dataset_duration(
os.path.join(exp_dir, "model_info.json"), dataset_duration=audio_length
)
elapsed_time = time.time() - start_time
print(
f"Preprocess completed in {elapsed_time:.2f} seconds on {format_duration(audio_length)} seconds of audio."
)
if __name__ == "__main__":
experiment_directory = str(sys.argv[1])
input_root = str(sys.argv[2])
sample_rate = int(sys.argv[3])
percentage = float(sys.argv[4])
num_processes = sys.argv[5]
if num_processes.lower() == "none":
num_processes = multiprocessing.cpu_count()
else:
num_processes = int(num_processes)
cut_preprocess = strtobool(sys.argv[6])
process_effects = strtobool(sys.argv[7])
noise_reduction = strtobool(sys.argv[8])
reduction_strength = float(sys.argv[9])
preprocess_training_set(
input_root,
sample_rate,
num_processes,
experiment_directory,
percentage,
cut_preprocess,
process_effects,
noise_reduction,
reduction_strength,
)
|