Spaces:
Runtime error
Runtime error
File size: 7,586 Bytes
a8c39f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import glob
import torch
import numpy as np
from scipy.io.wavfile import read
from collections import OrderedDict
import matplotlib.pyplot as plt
MATPLOTLIB_FLAG = False
def replace_keys_in_dict(d, old_key_part, new_key_part):
"""
Recursively replace parts of the keys in a dictionary.
Args:
d (dict or OrderedDict): The dictionary to update.
old_key_part (str): The part of the key to replace.
new_key_part (str): The new part of the key.
"""
updated_dict = OrderedDict() if isinstance(d, OrderedDict) else {}
for key, value in d.items():
new_key = (
key.replace(old_key_part, new_key_part) if isinstance(key, str) else key
)
updated_dict[new_key] = (
replace_keys_in_dict(value, old_key_part, new_key_part)
if isinstance(value, dict)
else value
)
return updated_dict
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
"""
Load a checkpoint into a model and optionally the optimizer.
Args:
checkpoint_path (str): Path to the checkpoint file.
model (torch.nn.Module): The model to load the checkpoint into.
optimizer (torch.optim.Optimizer, optional): The optimizer to load the state from. Defaults to None.
load_opt (int, optional): Whether to load the optimizer state. Defaults to 1.
"""
assert os.path.isfile(
checkpoint_path
), f"Checkpoint file not found: {checkpoint_path}"
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
checkpoint_dict = replace_keys_in_dict(
replace_keys_in_dict(
checkpoint_dict, ".weight_v", ".parametrizations.weight.original1"
),
".weight_g",
".parametrizations.weight.original0",
)
# Update model state_dict
model_state_dict = (
model.module.state_dict() if hasattr(model, "module") else model.state_dict()
)
new_state_dict = {
k: checkpoint_dict["model"].get(k, v) for k, v in model_state_dict.items()
}
# Load state_dict into model
if hasattr(model, "module"):
model.module.load_state_dict(new_state_dict, strict=False)
else:
model.load_state_dict(new_state_dict, strict=False)
if optimizer and load_opt == 1:
optimizer.load_state_dict(checkpoint_dict.get("optimizer", {}))
print(
f"Loaded checkpoint '{checkpoint_path}' (epoch {checkpoint_dict['iteration']})"
)
return (
model,
optimizer,
checkpoint_dict.get("learning_rate", 0),
checkpoint_dict["iteration"],
)
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
"""
Save the model and optimizer state to a checkpoint file.
Args:
model (torch.nn.Module): The model to save.
optimizer (torch.optim.Optimizer): The optimizer to save the state of.
learning_rate (float): The current learning rate.
iteration (int): The current iteration.
checkpoint_path (str): The path to save the checkpoint to.
"""
state_dict = (
model.module.state_dict() if hasattr(model, "module") else model.state_dict()
)
checkpoint_data = {
"model": state_dict,
"iteration": iteration,
"optimizer": optimizer.state_dict(),
"learning_rate": learning_rate,
}
torch.save(checkpoint_data, checkpoint_path)
# Create a backwards-compatible checkpoint
old_version_path = checkpoint_path.replace(".pth", "_old_version.pth")
checkpoint_data = replace_keys_in_dict(
replace_keys_in_dict(
checkpoint_data, ".parametrizations.weight.original1", ".weight_v"
),
".parametrizations.weight.original0",
".weight_g",
)
torch.save(checkpoint_data, old_version_path)
os.replace(old_version_path, checkpoint_path)
print(f"Saved model '{checkpoint_path}' (epoch {iteration})")
def summarize(
writer,
global_step,
scalars={},
histograms={},
images={},
audios={},
audio_sample_rate=22050,
):
"""
Log various summaries to a TensorBoard writer.
Args:
writer (SummaryWriter): The TensorBoard writer.
global_step (int): The current global step.
scalars (dict, optional): Dictionary of scalar values to log.
histograms (dict, optional): Dictionary of histogram values to log.
images (dict, optional): Dictionary of image values to log.
audios (dict, optional): Dictionary of audio values to log.
audio_sample_rate (int, optional): Sampling rate of the audio data.
"""
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats="HWC")
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sample_rate)
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
"""
Get the latest checkpoint file in a directory.
Args:
dir_path (str): The directory to search for checkpoints.
regex (str, optional): The regular expression to match checkpoint files.
"""
checkpoints = sorted(
glob.glob(os.path.join(dir_path, regex)),
key=lambda f: int("".join(filter(str.isdigit, f))),
)
return checkpoints[-1] if checkpoints else None
def plot_spectrogram_to_numpy(spectrogram):
"""
Convert a spectrogram to a NumPy array for visualization.
Args:
spectrogram (numpy.ndarray): The spectrogram to plot.
"""
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
plt.switch_backend("Agg")
MATPLOTLIB_FLAG = True
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return data
def load_wav_to_torch(full_path):
"""
Load a WAV file into a PyTorch tensor.
Args:
full_path (str): The path to the WAV file.
"""
sample_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sample_rate
def load_filepaths_and_text(filename, split="|"):
"""
Load filepaths and associated text from a file.
Args:
filename (str): The path to the file.
split (str, optional): The delimiter used to split the lines.
"""
with open(filename, encoding="utf-8") as f:
return [line.strip().split(split) for line in f]
class HParams:
"""
A class for storing and accessing hyperparameters.
"""
def __init__(self, **kwargs):
for k, v in kwargs.items():
self[k] = HParams(**v) if isinstance(v, dict) else v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return self.__dict__[key]
def __setitem__(self, key, value):
self.__dict__[key] = value
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return repr(self.__dict__)
|