File size: 7,727 Bytes
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import math
import torch
from typing import Optional

from rvc.lib.algorithm.commons import sequence_mask
from rvc.lib.algorithm.modules import WaveNet
from rvc.lib.algorithm.normalization import LayerNorm
from rvc.lib.algorithm.attentions import FFN, MultiHeadAttention


class Encoder(torch.nn.Module):
    """
    Encoder module for the Transformer model.

    Args:
        hidden_channels (int): Number of hidden channels in the encoder.
        filter_channels (int): Number of filter channels in the feed-forward network.
        n_heads (int): Number of attention heads.
        n_layers (int): Number of encoder layers.
        kernel_size (int, optional): Kernel size of the convolution layers in the feed-forward network. Defaults to 1.
        p_dropout (float, optional): Dropout probability. Defaults to 0.0.
        window_size (int, optional): Window size for relative positional encoding. Defaults to 10.
    """

    def __init__(
        self,
        hidden_channels,
        filter_channels,
        n_heads,
        n_layers,
        kernel_size=1,
        p_dropout=0.0,
        window_size=10,
        **kwargs
    ):
        super().__init__()
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.window_size = window_size

        self.drop = torch.nn.Dropout(p_dropout)
        self.attn_layers = torch.nn.ModuleList()
        self.norm_layers_1 = torch.nn.ModuleList()
        self.ffn_layers = torch.nn.ModuleList()
        self.norm_layers_2 = torch.nn.ModuleList()
        for i in range(self.n_layers):
            self.attn_layers.append(
                MultiHeadAttention(
                    hidden_channels,
                    hidden_channels,
                    n_heads,
                    p_dropout=p_dropout,
                    window_size=window_size,
                )
            )
            self.norm_layers_1.append(LayerNorm(hidden_channels))
            self.ffn_layers.append(
                FFN(
                    hidden_channels,
                    hidden_channels,
                    filter_channels,
                    kernel_size,
                    p_dropout=p_dropout,
                )
            )
            self.norm_layers_2.append(LayerNorm(hidden_channels))

    def forward(self, x, x_mask):
        attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
        x = x * x_mask
        for i in range(self.n_layers):
            y = self.attn_layers[i](x, x, attn_mask)
            y = self.drop(y)
            x = self.norm_layers_1[i](x + y)

            y = self.ffn_layers[i](x, x_mask)
            y = self.drop(y)
            x = self.norm_layers_2[i](x + y)
        x = x * x_mask
        return x


class TextEncoder(torch.nn.Module):
    """Text Encoder with configurable embedding dimension.

    Args:
        out_channels (int): Output channels of the encoder.
        hidden_channels (int): Hidden channels of the encoder.
        filter_channels (int): Filter channels of the encoder.
        n_heads (int): Number of attention heads.
        n_layers (int): Number of encoder layers.
        kernel_size (int): Kernel size of the convolutional layers.
        p_dropout (float): Dropout probability.
        embedding_dim (int): Embedding dimension for phone embeddings (v1 = 256, v2 = 768).
        f0 (bool, optional): Whether to use F0 embedding. Defaults to True.
    """

    def __init__(
        self,
        out_channels,
        hidden_channels,
        filter_channels,
        n_heads,
        n_layers,
        kernel_size,
        p_dropout,
        embedding_dim,
        f0=True,
    ):
        super(TextEncoder, self).__init__()
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = float(p_dropout)
        self.emb_phone = torch.nn.Linear(embedding_dim, hidden_channels)
        self.lrelu = torch.nn.LeakyReLU(0.1, inplace=True)
        if f0:
            self.emb_pitch = torch.nn.Embedding(256, hidden_channels)
        self.encoder = Encoder(
            hidden_channels,
            filter_channels,
            n_heads,
            n_layers,
            kernel_size,
            float(p_dropout),
        )
        self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(
        self, phone: torch.Tensor, pitch: Optional[torch.Tensor], lengths: torch.Tensor
    ):
        if pitch is None:
            x = self.emb_phone(phone)
        else:
            x = self.emb_phone(phone) + self.emb_pitch(pitch)
        x = x * math.sqrt(self.hidden_channels)  # [b, t, h]
        x = self.lrelu(x)
        x = torch.transpose(x, 1, -1)  # [b, h, t]
        x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
        x = self.encoder(x * x_mask, x_mask)
        stats = self.proj(x) * x_mask

        m, logs = torch.split(stats, self.out_channels, dim=1)
        return m, logs, x_mask


class PosteriorEncoder(torch.nn.Module):
    """Posterior Encoder for inferring latent representation.

    Args:
        in_channels (int): Number of channels in the input.
        out_channels (int): Number of channels in the output.
        hidden_channels (int): Number of hidden channels in the encoder.
        kernel_size (int): Kernel size of the convolutional layers.
        dilation_rate (int): Dilation rate of the convolutional layers.
        n_layers (int): Number of layers in the encoder.
        gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        hidden_channels,
        kernel_size,
        dilation_rate,
        n_layers,
        gin_channels=0,
    ):
        super(PosteriorEncoder, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels

        self.pre = torch.nn.Conv1d(in_channels, hidden_channels, 1)
        self.enc = WaveNet(
            hidden_channels,
            kernel_size,
            dilation_rate,
            n_layers,
            gin_channels=gin_channels,
        )
        self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(
        self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
    ):
        x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
        x = self.pre(x) * x_mask
        x = self.enc(x, x_mask, g=g)
        stats = self.proj(x) * x_mask
        m, logs = torch.split(stats, self.out_channels, dim=1)
        z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
        return z, m, logs, x_mask

    def remove_weight_norm(self):
        """Removes weight normalization from the encoder."""
        self.enc.remove_weight_norm()

    def __prepare_scriptable__(self):
        """Prepares the module for scripting."""
        for hook in self.enc._forward_pre_hooks.values():
            if (
                hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
                and hook.__class__.__name__ == "WeightNorm"
            ):
                torch.nn.utils.remove_weight_norm(self.enc)
        return self