File size: 18,835 Bytes
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from librosa.filters import mel
from typing import List

# Constants for readability
N_MELS = 128
N_CLASS = 360


# Define a helper function for creating convolutional blocks
class ConvBlockRes(nn.Module):
    """
    A convolutional block with residual connection.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        momentum (float): Momentum for batch normalization.
    """

    def __init__(self, in_channels, out_channels, momentum=0.01):
        super(ConvBlockRes, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=(3, 3),
                stride=(1, 1),
                padding=(1, 1),
                bias=False,
            ),
            nn.BatchNorm2d(out_channels, momentum=momentum),
            nn.ReLU(),
            nn.Conv2d(
                in_channels=out_channels,
                out_channels=out_channels,
                kernel_size=(3, 3),
                stride=(1, 1),
                padding=(1, 1),
                bias=False,
            ),
            nn.BatchNorm2d(out_channels, momentum=momentum),
            nn.ReLU(),
        )
        if in_channels != out_channels:
            self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
            self.is_shortcut = True
        else:
            self.is_shortcut = False

    def forward(self, x):
        if self.is_shortcut:
            return self.conv(x) + self.shortcut(x)
        else:
            return self.conv(x) + x


# Define a class for residual encoder blocks
class ResEncoderBlock(nn.Module):
    """
    A residual encoder block.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        kernel_size (tuple): Size of the average pooling kernel.
        n_blocks (int): Number of convolutional blocks in the block.
        momentum (float): Momentum for batch normalization.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
    ):
        super(ResEncoderBlock, self).__init__()
        self.n_blocks = n_blocks
        self.conv = nn.ModuleList()
        self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
        for _ in range(n_blocks - 1):
            self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
        self.kernel_size = kernel_size
        if self.kernel_size is not None:
            self.pool = nn.AvgPool2d(kernel_size=kernel_size)

    def forward(self, x):
        for i in range(self.n_blocks):
            x = self.conv[i](x)
        if self.kernel_size is not None:
            return x, self.pool(x)
        else:
            return x


# Define a class for the encoder
class Encoder(nn.Module):
    """
    The encoder part of the DeepUnet.

    Args:
        in_channels (int): Number of input channels.
        in_size (int): Size of the input tensor.
        n_encoders (int): Number of encoder blocks.
        kernel_size (tuple): Size of the average pooling kernel.
        n_blocks (int): Number of convolutional blocks in each encoder block.
        out_channels (int): Number of output channels for the first encoder block.
        momentum (float): Momentum for batch normalization.
    """

    def __init__(
        self,
        in_channels,
        in_size,
        n_encoders,
        kernel_size,
        n_blocks,
        out_channels=16,
        momentum=0.01,
    ):
        super(Encoder, self).__init__()
        self.n_encoders = n_encoders
        self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
        self.layers = nn.ModuleList()
        self.latent_channels = []
        for i in range(self.n_encoders):
            self.layers.append(
                ResEncoderBlock(
                    in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
                )
            )
            self.latent_channels.append([out_channels, in_size])
            in_channels = out_channels
            out_channels *= 2
            in_size //= 2
        self.out_size = in_size
        self.out_channel = out_channels

    def forward(self, x: torch.Tensor):
        concat_tensors: List[torch.Tensor] = []
        x = self.bn(x)
        for i in range(self.n_encoders):
            t, x = self.layers[i](x)
            concat_tensors.append(t)
        return x, concat_tensors


# Define a class for the intermediate layer
class Intermediate(nn.Module):
    """
    The intermediate layer of the DeepUnet.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        n_inters (int): Number of convolutional blocks in the intermediate layer.
        n_blocks (int): Number of convolutional blocks in each intermediate block.
        momentum (float): Momentum for batch normalization.
    """

    def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
        super(Intermediate, self).__init__()
        self.n_inters = n_inters
        self.layers = nn.ModuleList()
        self.layers.append(
            ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
        )
        for _ in range(self.n_inters - 1):
            self.layers.append(
                ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
            )

    def forward(self, x):
        for i in range(self.n_inters):
            x = self.layers[i](x)
        return x


# Define a class for residual decoder blocks
class ResDecoderBlock(nn.Module):
    """
    A residual decoder block.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        stride (tuple): Stride for transposed convolution.
        n_blocks (int): Number of convolutional blocks in the block.
        momentum (float): Momentum for batch normalization.
    """

    def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
        super(ResDecoderBlock, self).__init__()
        out_padding = (0, 1) if stride == (1, 2) else (1, 1)
        self.n_blocks = n_blocks
        self.conv1 = nn.Sequential(
            nn.ConvTranspose2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=(3, 3),
                stride=stride,
                padding=(1, 1),
                output_padding=out_padding,
                bias=False,
            ),
            nn.BatchNorm2d(out_channels, momentum=momentum),
            nn.ReLU(),
        )
        self.conv2 = nn.ModuleList()
        self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
        for _ in range(n_blocks - 1):
            self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))

    def forward(self, x, concat_tensor):
        x = self.conv1(x)
        x = torch.cat((x, concat_tensor), dim=1)
        for i in range(self.n_blocks):
            x = self.conv2[i](x)
        return x


# Define a class for the decoder
class Decoder(nn.Module):
    """
    The decoder part of the DeepUnet.

    Args:
        in_channels (int): Number of input channels.
        n_decoders (int): Number of decoder blocks.
        stride (tuple): Stride for transposed convolution.
        n_blocks (int): Number of convolutional blocks in each decoder block.
        momentum (float): Momentum for batch normalization.
    """

    def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
        super(Decoder, self).__init__()
        self.layers = nn.ModuleList()
        self.n_decoders = n_decoders
        for _ in range(self.n_decoders):
            out_channels = in_channels // 2
            self.layers.append(
                ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
            )
            in_channels = out_channels

    def forward(self, x, concat_tensors):
        for i in range(self.n_decoders):
            x = self.layers[i](x, concat_tensors[-1 - i])
        return x


# Define a class for the DeepUnet architecture
class DeepUnet(nn.Module):
    """
    The DeepUnet architecture.

    Args:
        kernel_size (tuple): Size of the average pooling kernel.
        n_blocks (int): Number of convolutional blocks in each encoder/decoder block.
        en_de_layers (int): Number of encoder/decoder layers.
        inter_layers (int): Number of convolutional blocks in the intermediate layer.
        in_channels (int): Number of input channels.
        en_out_channels (int): Number of output channels for the first encoder block.
    """

    def __init__(
        self,
        kernel_size,
        n_blocks,
        en_de_layers=5,
        inter_layers=4,
        in_channels=1,
        en_out_channels=16,
    ):
        super(DeepUnet, self).__init__()
        self.encoder = Encoder(
            in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
        )
        self.intermediate = Intermediate(
            self.encoder.out_channel // 2,
            self.encoder.out_channel,
            inter_layers,
            n_blocks,
        )
        self.decoder = Decoder(
            self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
        )

    def forward(self, x):
        x, concat_tensors = self.encoder(x)
        x = self.intermediate(x)
        x = self.decoder(x, concat_tensors)
        return x


# Define a class for the end-to-end model
class E2E(nn.Module):
    """
    The end-to-end model.

    Args:
        n_blocks (int): Number of convolutional blocks in each encoder/decoder block.
        n_gru (int): Number of GRU layers.
        kernel_size (tuple): Size of the average pooling kernel.
        en_de_layers (int): Number of encoder/decoder layers.
        inter_layers (int): Number of convolutional blocks in the intermediate layer.
        in_channels (int): Number of input channels.
        en_out_channels (int): Number of output channels for the first encoder block.
    """

    def __init__(
        self,
        n_blocks,
        n_gru,
        kernel_size,
        en_de_layers=5,
        inter_layers=4,
        in_channels=1,
        en_out_channels=16,
    ):
        super(E2E, self).__init__()
        self.unet = DeepUnet(
            kernel_size,
            n_blocks,
            en_de_layers,
            inter_layers,
            in_channels,
            en_out_channels,
        )
        self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
        if n_gru:
            self.fc = nn.Sequential(
                BiGRU(3 * 128, 256, n_gru),
                nn.Linear(512, N_CLASS),
                nn.Dropout(0.25),
                nn.Sigmoid(),
            )
        else:
            self.fc = nn.Sequential(
                nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
            )

    def forward(self, mel):
        mel = mel.transpose(-1, -2).unsqueeze(1)
        x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
        x = self.fc(x)
        return x


# Define a class for the MelSpectrogram extractor
class MelSpectrogram(torch.nn.Module):
    """
    Extracts Mel-spectrogram features from audio.

    Args:
        is_half (bool): Whether to use half-precision floating-point numbers.
        n_mel_channels (int): Number of Mel-frequency bands.
        sample_rate (int): Sampling rate of the audio.
        win_length (int): Length of the window function in samples.
        hop_length (int): Hop size between frames in samples.
        n_fft (int, optional): Length of the FFT window. Defaults to None, which uses win_length.
        mel_fmin (int, optional): Minimum frequency for the Mel filter bank. Defaults to 0.
        mel_fmax (int, optional): Maximum frequency for the Mel filter bank. Defaults to None.
        clamp (float, optional): Minimum value for clamping the Mel-spectrogram. Defaults to 1e-5.
    """

    def __init__(
        self,
        is_half,
        n_mel_channels,
        sample_rate,
        win_length,
        hop_length,
        n_fft=None,
        mel_fmin=0,
        mel_fmax=None,
        clamp=1e-5,
    ):
        super().__init__()
        n_fft = win_length if n_fft is None else n_fft
        self.hann_window = {}
        mel_basis = mel(
            sr=sample_rate,
            n_fft=n_fft,
            n_mels=n_mel_channels,
            fmin=mel_fmin,
            fmax=mel_fmax,
            htk=True,
        )
        mel_basis = torch.from_numpy(mel_basis).float()
        self.register_buffer("mel_basis", mel_basis)
        self.n_fft = win_length if n_fft is None else n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.sample_rate = sample_rate
        self.n_mel_channels = n_mel_channels
        self.clamp = clamp
        self.is_half = is_half

    def forward(self, audio, keyshift=0, speed=1, center=True):
        factor = 2 ** (keyshift / 12)
        n_fft_new = int(np.round(self.n_fft * factor))
        win_length_new = int(np.round(self.win_length * factor))
        hop_length_new = int(np.round(self.hop_length * speed))
        keyshift_key = str(keyshift) + "_" + str(audio.device)
        if keyshift_key not in self.hann_window:
            self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
                audio.device
            )
        fft = torch.stft(
            audio,
            n_fft=n_fft_new,
            hop_length=hop_length_new,
            win_length=win_length_new,
            window=self.hann_window[keyshift_key],
            center=center,
            return_complex=True,
        )

        magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
        if keyshift != 0:
            size = self.n_fft // 2 + 1
            resize = magnitude.size(1)
            if resize < size:
                magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
            magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
        mel_output = torch.matmul(self.mel_basis, magnitude)
        if self.is_half:
            mel_output = mel_output.half()
        log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
        return log_mel_spec


# Define a class for the RMVPE0 predictor
class RMVPE0Predictor:
    """
    A predictor for fundamental frequency (F0) based on the RMVPE0 model.

    Args:
        model_path (str): Path to the RMVPE0 model file.
        is_half (bool): Whether to use half-precision floating-point numbers.
        device (str, optional): Device to use for computation. Defaults to None, which uses CUDA if available.
    """

    def __init__(self, model_path, is_half, device=None):
        self.resample_kernel = {}
        model = E2E(4, 1, (2, 2))
        ckpt = torch.load(model_path, map_location="cpu")
        model.load_state_dict(ckpt)
        model.eval()
        if is_half:
            model = model.half()
        self.model = model
        self.resample_kernel = {}
        self.is_half = is_half
        self.device = device
        self.mel_extractor = MelSpectrogram(
            is_half, N_MELS, 16000, 1024, 160, None, 30, 8000
        ).to(device)
        self.model = self.model.to(device)
        cents_mapping = 20 * np.arange(N_CLASS) + 1997.3794084376191
        self.cents_mapping = np.pad(cents_mapping, (4, 4))

    def mel2hidden(self, mel):
        """
        Converts Mel-spectrogram features to hidden representation.

        Args:
            mel (torch.Tensor): Mel-spectrogram features.
        """
        with torch.no_grad():
            n_frames = mel.shape[-1]
            mel = F.pad(
                mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
            )
            hidden = self.model(mel)
            return hidden[:, :n_frames]

    def decode(self, hidden, thred=0.03):
        """
        Decodes hidden representation to F0.

        Args:
            hidden (np.ndarray): Hidden representation.
            thred (float, optional): Threshold for salience. Defaults to 0.03.
        """
        cents_pred = self.to_local_average_cents(hidden, thred=thred)
        f0 = 10 * (2 ** (cents_pred / 1200))
        f0[f0 == 10] = 0
        return f0

    def infer_from_audio(self, audio, thred=0.03):
        """
        Infers F0 from audio.

        Args:
            audio (np.ndarray): Audio signal.
            thred (float, optional): Threshold for salience. Defaults to 0.03.
        """
        audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
        mel = self.mel_extractor(audio, center=True)
        hidden = self.mel2hidden(mel)
        hidden = hidden.squeeze(0).cpu().numpy()
        if self.is_half == True:
            hidden = hidden.astype("float32")
        f0 = self.decode(hidden, thred=thred)
        return f0

    def to_local_average_cents(self, salience, thred=0.05):
        """
        Converts salience to local average cents.

        Args:
            salience (np.ndarray): Salience values.
            thred (float, optional): Threshold for salience. Defaults to 0.05.
        """
        center = np.argmax(salience, axis=1)
        salience = np.pad(salience, ((0, 0), (4, 4)))
        center += 4
        todo_salience = []
        todo_cents_mapping = []
        starts = center - 4
        ends = center + 5
        for idx in range(salience.shape[0]):
            todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
            todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
        todo_salience = np.array(todo_salience)
        todo_cents_mapping = np.array(todo_cents_mapping)
        product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
        weight_sum = np.sum(todo_salience, 1)
        devided = product_sum / weight_sum
        maxx = np.max(salience, axis=1)
        devided[maxx <= thred] = 0
        return devided


# Define a class for BiGRU (bidirectional GRU)
class BiGRU(nn.Module):
    """
    A bidirectional GRU layer.

    Args:
        input_features (int): Number of input features.
        hidden_features (int): Number of hidden features.
        num_layers (int): Number of GRU layers.
    """

    def __init__(self, input_features, hidden_features, num_layers):
        super(BiGRU, self).__init__()
        self.gru = nn.GRU(
            input_features,
            hidden_features,
            num_layers=num_layers,
            batch_first=True,
            bidirectional=True,
        )

    def forward(self, x):
        return self.gru(x)[0]