Spaces:
Runtime error
Runtime error
File size: 34,141 Bytes
a8c39f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 |
import os
import re
import sys
import glob
import json
import torch
import datetime
from distutils.util import strtobool
from random import randint, shuffle
from time import time as ttime
from time import sleep
from tqdm import tqdm
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import GradScaler, autocast
from torch.utils.data import DataLoader
from torch.nn import functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))
# Zluda hijack
import rvc.lib.zluda
from utils import (
HParams,
plot_spectrogram_to_numpy,
summarize,
load_checkpoint,
save_checkpoint,
latest_checkpoint_path,
load_wav_to_torch,
)
from losses import (
discriminator_loss,
feature_loss,
generator_loss,
kl_loss,
)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from rvc.train.process.extract_model import extract_model
from rvc.lib.algorithm import commons
# Parse command line arguments
model_name = sys.argv[1]
save_every_epoch = int(sys.argv[2])
total_epoch = int(sys.argv[3])
pretrainG = sys.argv[4]
pretrainD = sys.argv[5]
version = sys.argv[6]
gpus = sys.argv[7]
batch_size = int(sys.argv[8])
sample_rate = int(sys.argv[9])
pitch_guidance = strtobool(sys.argv[10])
save_only_latest = strtobool(sys.argv[11])
save_every_weights = strtobool(sys.argv[12])
cache_data_in_gpu = strtobool(sys.argv[13])
overtraining_detector = strtobool(sys.argv[14])
overtraining_threshold = int(sys.argv[15])
cleanup = strtobool(sys.argv[16])
current_dir = os.getcwd()
experiment_dir = os.path.join(current_dir, "logs", model_name)
config_save_path = os.path.join(experiment_dir, "config.json")
dataset_path = os.path.join(experiment_dir, "sliced_audios")
with open(config_save_path, "r") as f:
config = json.load(f)
config = HParams(**config)
config.data.training_files = os.path.join(experiment_dir, "filelist.txt")
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
global_step = 0
last_loss_gen_all = 0
overtrain_save_epoch = 0
loss_gen_history = []
smoothed_loss_gen_history = []
loss_disc_history = []
smoothed_loss_disc_history = []
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
training_file_path = os.path.join(experiment_dir, "training_data.json")
import logging
logging.getLogger("torch").setLevel(logging.ERROR)
class EpochRecorder:
"""
Records the time elapsed per epoch.
"""
def __init__(self):
self.last_time = ttime()
def record(self):
"""
Records the elapsed time and returns a formatted string.
"""
now_time = ttime()
elapsed_time = now_time - self.last_time
self.last_time = now_time
elapsed_time = round(elapsed_time, 1)
elapsed_time_str = str(datetime.timedelta(seconds=int(elapsed_time)))
current_time = datetime.datetime.now().strftime("%H:%M:%S")
return f"time={current_time} | training_speed={elapsed_time_str}"
def verify_checkpoint_shapes(checkpoint_path, model):
checkpoint = torch.load(checkpoint_path, map_location="cpu")
checkpoint_state_dict = checkpoint["model"]
try:
if hasattr(model, "module"):
model_state_dict = model.module.load_state_dict(checkpoint_state_dict)
else:
model_state_dict = model.load_state_dict(checkpoint_state_dict)
except RuntimeError:
print(
"The parameters of the pretrain model such as the sample rate or architecture do not match the selected model."
)
sys.exit(1)
else:
del checkpoint
del checkpoint_state_dict
del model_state_dict
def main():
"""
Main function to start the training process.
"""
global training_file_path, last_loss_gen_all, smoothed_loss_gen_history, loss_gen_history, loss_disc_history, smoothed_loss_disc_history, overtrain_save_epoch
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
# Check sample rate
wavs = glob.glob(
os.path.join(os.path.join(experiment_dir, "sliced_audios"), "*.wav")
)
if wavs:
_, sr = load_wav_to_torch(wavs[0])
if sr != sample_rate:
print(
f"Error: Pretrained model sample rate ({sample_rate} Hz) does not match dataset audio sample rate ({sr} Hz)."
)
os._exit(1)
else:
print("No wav file found.")
if torch.cuda.is_available():
device = torch.device("cuda")
n_gpus = torch.cuda.device_count()
elif torch.backends.mps.is_available():
device = torch.device("mps")
n_gpus = 1
else:
device = torch.device("cpu")
n_gpus = 1
print("Training with CPU, this will take a long time.")
def start():
"""
Starts the training process with multi-GPU support or CPU.
"""
children = []
pid_data = {"process_pids": []}
with open(config_save_path, "r") as pid_file:
try:
existing_data = json.load(pid_file)
pid_data.update(existing_data)
except json.JSONDecodeError:
pass
with open(config_save_path, "w") as pid_file:
for i in range(n_gpus):
subproc = mp.Process(
target=run,
args=(
i,
n_gpus,
experiment_dir,
pretrainG,
pretrainD,
pitch_guidance,
total_epoch,
save_every_weights,
config,
device,
),
)
children.append(subproc)
subproc.start()
pid_data["process_pids"].append(subproc.pid)
json.dump(pid_data, pid_file, indent=4)
for i in range(n_gpus):
children[i].join()
def load_from_json(file_path):
"""
Load data from a JSON file.
Args:
file_path (str): The path to the JSON file.
"""
if os.path.exists(file_path):
with open(file_path, "r") as f:
data = json.load(f)
return (
data.get("loss_disc_history", []),
data.get("smoothed_loss_disc_history", []),
data.get("loss_gen_history", []),
data.get("smoothed_loss_gen_history", []),
)
return [], [], [], []
def continue_overtrain_detector(training_file_path):
"""
Continues the overtrain detector by loading the training history from a JSON file.
Args:
training_file_path (str): The file path of the JSON file containing the training history.
"""
if overtraining_detector:
if os.path.exists(training_file_path):
(
loss_disc_history,
smoothed_loss_disc_history,
loss_gen_history,
smoothed_loss_gen_history,
) = load_from_json(training_file_path)
if cleanup:
print("Removing files from the prior training attempt...")
# Clean up unnecessary files
for root, dirs, files in os.walk(
os.path.join(now_dir, "logs", model_name), topdown=False
):
for name in files:
file_path = os.path.join(root, name)
file_name, file_extension = os.path.splitext(name)
if (
file_extension == ".0"
or (file_name.startswith("D_") and file_extension == ".pth")
or (file_name.startswith("G_") and file_extension == ".pth")
or (file_name.startswith("added") and file_extension == ".index")
):
os.remove(file_path)
for name in dirs:
if name == "eval":
folder_path = os.path.join(root, name)
for item in os.listdir(folder_path):
item_path = os.path.join(folder_path, item)
if os.path.isfile(item_path):
os.remove(item_path)
os.rmdir(folder_path)
print("Cleanup done!")
continue_overtrain_detector(training_file_path)
start()
def run(
rank,
n_gpus,
experiment_dir,
pretrainG,
pretrainD,
pitch_guidance,
custom_total_epoch,
custom_save_every_weights,
config,
device,
):
"""
Runs the training loop on a specific GPU or CPU.
Args:
rank (int): The rank of the current process within the distributed training setup.
n_gpus (int): The total number of GPUs available for training.
experiment_dir (str): The directory where experiment logs and checkpoints will be saved.
pretrainG (str): Path to the pre-trained generator model.
pretrainD (str): Path to the pre-trained discriminator model.
pitch_guidance (bool): Flag indicating whether to use pitch guidance during training.
custom_total_epoch (int): The total number of epochs for training.
custom_save_every_weights (int): The interval (in epochs) at which to save model weights.
config (object): Configuration object containing training parameters.
device (torch.device): The device to use for training (CPU or GPU).
"""
global global_step, smoothed_value_gen, smoothed_value_disc
smoothed_value_gen = 0
smoothed_value_disc = 0
if rank == 0:
writer = SummaryWriter(log_dir=experiment_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval"))
else:
writer, writer_eval = None, None
dist.init_process_group(
backend="gloo",
init_method="env://",
world_size=n_gpus if device.type == "cuda" else 1,
rank=rank if device.type == "cuda" else 0,
)
torch.manual_seed(config.train.seed)
if torch.cuda.is_available():
torch.cuda.set_device(rank)
# Create datasets and dataloaders
from data_utils import (
DistributedBucketSampler,
TextAudioCollateMultiNSFsid,
TextAudioLoaderMultiNSFsid,
)
train_dataset = TextAudioLoaderMultiNSFsid(config.data)
collate_fn = TextAudioCollateMultiNSFsid()
train_sampler = DistributedBucketSampler(
train_dataset,
batch_size * n_gpus,
[100, 200, 300, 400, 500, 600, 700, 800, 900],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
train_loader = DataLoader(
train_dataset,
num_workers=4,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler,
persistent_workers=True,
prefetch_factor=8,
)
# Initialize models and optimizers
from rvc.lib.algorithm.discriminators import MultiPeriodDiscriminator
from rvc.lib.algorithm.discriminators import MultiPeriodDiscriminatorV2
from rvc.lib.algorithm.synthesizers import Synthesizer
net_g = Synthesizer(
config.data.filter_length // 2 + 1,
config.train.segment_size // config.data.hop_length,
**config.model,
use_f0=pitch_guidance == True, # converting 1/0 to True/False
is_half=config.train.fp16_run and device.type == "cuda",
sr=sample_rate,
).to(device)
if version == "v1":
net_d = MultiPeriodDiscriminator(config.model.use_spectral_norm).to(device)
else:
net_d = MultiPeriodDiscriminatorV2(config.model.use_spectral_norm).to(device)
optim_g = torch.optim.AdamW(
net_g.parameters(),
config.train.learning_rate,
betas=config.train.betas,
eps=config.train.eps,
)
optim_d = torch.optim.AdamW(
net_d.parameters(),
config.train.learning_rate,
betas=config.train.betas,
eps=config.train.eps,
)
# Wrap models with DDP for multi-gpu processing
if n_gpus > 1 and device.type == "cuda":
net_g = DDP(net_g, device_ids=[rank])
net_d = DDP(net_d, device_ids=[rank])
# Load checkpoint if available
try:
print("Starting training...")
_, _, _, epoch_str = load_checkpoint(
latest_checkpoint_path(experiment_dir, "D_*.pth"), net_d, optim_d
)
_, _, _, epoch_str = load_checkpoint(
latest_checkpoint_path(experiment_dir, "G_*.pth"), net_g, optim_g
)
epoch_str += 1
global_step = (epoch_str - 1) * len(train_loader)
except:
epoch_str = 1
global_step = 0
if pretrainG != "":
if rank == 0:
verify_checkpoint_shapes(pretrainG, net_g)
print(f"Loaded pretrained (G) '{pretrainG}'")
if hasattr(net_g, "module"):
net_g.module.load_state_dict(
torch.load(pretrainG, map_location="cpu")["model"]
)
else:
net_g.load_state_dict(
torch.load(pretrainG, map_location="cpu")["model"]
)
if pretrainD != "":
if rank == 0:
print(f"Loaded pretrained (D) '{pretrainD}'")
if hasattr(net_d, "module"):
net_d.module.load_state_dict(
torch.load(pretrainD, map_location="cpu")["model"]
)
else:
net_d.load_state_dict(
torch.load(pretrainD, map_location="cpu")["model"]
)
# Initialize schedulers and scaler
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2
)
scaler = GradScaler(enabled=config.train.fp16_run and device.type == "cuda")
cache = []
# get the first sample as reference for tensorboard evaluation
# custom reference temporarily disabled
if True == False and os.path.isfile(
os.path.join("logs", "reference", f"ref{sample_rate}.wav")
):
import numpy as np
phone = np.load(
os.path.join("logs", "reference", f"ref{sample_rate}_feats.npy")
)
# expanding x2 to match pitch size
phone = np.repeat(phone, 2, axis=0)
phone = torch.FloatTensor(phone).unsqueeze(0).to(device)
phone_lengths = torch.LongTensor(phone.size(0)).to(device)
pitch = np.load(os.path.join("logs", "reference", f"ref{sample_rate}_f0c.npy"))
# removed last frame to match features
pitch = torch.LongTensor(pitch[:-1]).unsqueeze(0).to(device)
pitchf = np.load(os.path.join("logs", "reference", f"ref{sample_rate}_f0f.npy"))
# removed last frame to match features
pitchf = torch.FloatTensor(pitchf[:-1]).unsqueeze(0).to(device)
sid = torch.LongTensor([0]).to(device)
reference = (
phone,
phone_lengths,
pitch if pitch_guidance else None,
pitchf if pitch_guidance else None,
sid,
)
else:
for info in train_loader:
phone, phone_lengths, pitch, pitchf, _, _, _, _, sid = info
reference = (
phone.to(device),
phone_lengths.to(device),
pitch.to(device) if pitch_guidance else None,
pitchf.to(device) if pitch_guidance else None,
sid.to(device),
)
break
for epoch in range(epoch_str, total_epoch + 1):
train_and_evaluate(
rank,
epoch,
config,
[net_g, net_d],
[optim_g, optim_d],
scaler,
[train_loader, None],
[writer, writer_eval],
cache,
custom_save_every_weights,
custom_total_epoch,
device,
reference,
)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(
rank,
epoch,
hps,
nets,
optims,
scaler,
loaders,
writers,
cache,
custom_save_every_weights,
custom_total_epoch,
device,
reference,
):
"""
Trains and evaluates the model for one epoch.
Args:
rank (int): Rank of the current process.
epoch (int): Current epoch number.
hps (Namespace): Hyperparameters.
nets (list): List of models [net_g, net_d].
optims (list): List of optimizers [optim_g, optim_d].
scaler (GradScaler): Gradient scaler for mixed precision training.
loaders (list): List of dataloaders [train_loader, eval_loader].
writers (list): List of TensorBoard writers [writer, writer_eval].
cache (list): List to cache data in GPU memory.
use_cpu (bool): Whether to use CPU for training.
"""
global global_step, lowest_value, loss_disc, consecutive_increases_gen, consecutive_increases_disc, smoothed_value_gen, smoothed_value_disc
if epoch == 1:
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
last_loss_gen_all = 0.0
consecutive_increases_gen = 0
consecutive_increases_disc = 0
net_g, net_d = nets
optim_g, optim_d = optims
train_loader = loaders[0] if loaders is not None else None
if writers is not None:
writer = writers[0]
train_loader.batch_sampler.set_epoch(epoch)
net_g.train()
net_d.train()
# Data caching
if device.type == "cuda" and cache_data_in_gpu:
data_iterator = cache
if cache == []:
for batch_idx, info in enumerate(train_loader):
# phone, phone_lengths, pitch, pitchf, spec, spec_lengths, wave, wave_lengths, sid
info = [tensor.cuda(rank, non_blocking=True) for tensor in info]
cache.append((batch_idx, info))
else:
shuffle(cache)
else:
data_iterator = enumerate(train_loader)
epoch_recorder = EpochRecorder()
with tqdm(total=len(train_loader), leave=False) as pbar:
for batch_idx, info in data_iterator:
if device.type == "cuda" and not cache_data_in_gpu:
info = [tensor.cuda(rank, non_blocking=True) for tensor in info]
elif device.type != "cuda":
info = [tensor.to(device) for tensor in info]
# else iterator is going thru a cached list with a device already assigned
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = info
pitch = pitch if pitch_guidance else None
pitchf = pitchf if pitch_guidance else None
# Forward pass
use_amp = config.train.fp16_run and device.type == "cuda"
with autocast(enabled=use_amp):
model_output = net_g(
phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid
)
y_hat, ids_slice, x_mask, z_mask, (z, z_p, m_p, logs_p, m_q, logs_q) = (
model_output
)
# used for tensorboard chart - all/mel
mel = spec_to_mel_torch(
spec,
config.data.filter_length,
config.data.n_mel_channels,
config.data.sample_rate,
config.data.mel_fmin,
config.data.mel_fmax,
)
# used for tensorboard chart - slice/mel_org
y_mel = commons.slice_segments(
mel,
ids_slice,
config.train.segment_size // config.data.hop_length,
dim=3,
)
# used for tensorboard chart - slice/mel_gen
with autocast(enabled=False):
y_hat_mel = mel_spectrogram_torch(
y_hat.float().squeeze(1),
config.data.filter_length,
config.data.n_mel_channels,
config.data.sample_rate,
config.data.hop_length,
config.data.win_length,
config.data.mel_fmin,
config.data.mel_fmax,
)
if use_amp:
y_hat_mel = y_hat_mel.half()
# slice of the original waveform to match a generate slice
wave = commons.slice_segments(
wave,
ids_slice * config.data.hop_length,
config.train.segment_size,
dim=3,
)
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
# Discriminator backward and update
optim_d.zero_grad()
scaler.scale(loss_disc).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value(net_d.parameters(), None)
scaler.step(optim_d)
# Generator backward and update
with autocast(enabled=use_amp):
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
with autocast(enabled=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel
loss_kl = (
kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl
)
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
if loss_gen_all < lowest_value["value"]:
lowest_value["value"] = loss_gen_all
lowest_value["step"] = global_step
lowest_value["epoch"] = epoch
# print(f'Lowest generator loss updated: {lowest_value["value"]} at epoch {epoch}, step {global_step}')
if epoch > lowest_value["epoch"]:
print(
"Alert: The lower generating loss has been exceeded by a lower loss in a subsequent epoch."
)
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
global_step += 1
pbar.update(1)
# Logging and checkpointing
if rank == 0:
lr = optim_g.param_groups[0]["lr"]
if loss_mel > 75:
loss_mel = 75
if loss_kl > 9:
loss_kl = 9
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc,
"learning_rate": lr,
"grad/norm_d": grad_norm_d,
"grad/norm_g": grad_norm_g,
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/kl": loss_kl,
}
# commented out
# scalar_dict.update({f"loss/g/{i}": v for i, v in enumerate(losses_gen)})
# scalar_dict.update({f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)})
# scalar_dict.update({f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)})
image_dict = {
"slice/mel_org": plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
}
with torch.no_grad():
if hasattr(net_g, "module"):
o, *_ = net_g.module.infer(*reference)
else:
o, *_ = net_g.infer(*reference)
audio_dict = {f"gen/audio_{global_step:07d}": o[0, :, :]}
summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
audios=audio_dict,
audio_sample_rate=config.data.sample_rate,
)
# Save checkpoint
model_add = []
model_del = []
done = False
if rank == 0:
# Save weights every N epochs
if epoch % save_every_epoch == 0:
checkpoint_suffix = f"{2333333 if save_only_latest else global_step}.pth"
save_checkpoint(
net_g,
optim_g,
config.train.learning_rate,
epoch,
os.path.join(experiment_dir, "G_" + checkpoint_suffix),
)
save_checkpoint(
net_d,
optim_d,
config.train.learning_rate,
epoch,
os.path.join(experiment_dir, "D_" + checkpoint_suffix),
)
if custom_save_every_weights:
model_add.append(
os.path.join(
experiment_dir, f"{model_name}_{epoch}e_{global_step}s.pth"
)
)
overtrain_info = ""
# Check overtraining
if overtraining_detector and rank == 0 and epoch > 1:
# Add the current loss to the history
current_loss_disc = float(loss_disc)
loss_disc_history.append(current_loss_disc)
# Update smoothed loss history with loss_disc
smoothed_value_disc = update_exponential_moving_average(
smoothed_loss_disc_history, current_loss_disc
)
# Check overtraining with smoothed loss_disc
is_overtraining_disc = check_overtraining(
smoothed_loss_disc_history, overtraining_threshold * 2
)
if is_overtraining_disc:
consecutive_increases_disc += 1
else:
consecutive_increases_disc = 0
# Add the current loss_gen to the history
current_loss_gen = float(lowest_value["value"])
loss_gen_history.append(current_loss_gen)
# Update the smoothed loss_gen history
smoothed_value_gen = update_exponential_moving_average(
smoothed_loss_gen_history, current_loss_gen
)
# Check for overtraining with the smoothed loss_gen
is_overtraining_gen = check_overtraining(
smoothed_loss_gen_history, overtraining_threshold, 0.01
)
if is_overtraining_gen:
consecutive_increases_gen += 1
else:
consecutive_increases_gen = 0
overtrain_info = f"Smoothed loss_g {smoothed_value_gen:.3f} and loss_d {smoothed_value_disc:.3f}"
# Save the data in the JSON file if the epoch is divisible by save_every_epoch
if epoch % save_every_epoch == 0:
save_to_json(
training_file_path,
loss_disc_history,
smoothed_loss_disc_history,
loss_gen_history,
smoothed_loss_gen_history,
)
if (
is_overtraining_gen
and consecutive_increases_gen == overtraining_threshold
or is_overtraining_disc
and consecutive_increases_disc == overtraining_threshold * 2
):
print(
f"Overtraining detected at epoch {epoch} with smoothed loss_g {smoothed_value_gen:.3f} and loss_d {smoothed_value_disc:.3f}"
)
done = True
else:
print(
f"New best epoch {epoch} with smoothed loss_g {smoothed_value_gen:.3f} and loss_d {smoothed_value_disc:.3f}"
)
old_model_files = glob.glob(
os.path.join(experiment_dir, f"{model_name}_*e_*s_best_epoch.pth")
)
for file in old_model_files:
model_del.append(file)
model_add.append(
os.path.join(
experiment_dir,
f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth",
)
)
# Check completion
if epoch >= custom_total_epoch:
lowest_value_rounded = float(lowest_value["value"])
lowest_value_rounded = round(lowest_value_rounded, 3)
print(
f"Training has been successfully completed with {epoch} epoch, {global_step} steps and {round(loss_gen_all.item(), 3)} loss gen."
)
print(
f"Lowest generator loss: {lowest_value_rounded} at epoch {lowest_value['epoch']}, step {lowest_value['step']}"
)
pid_file_path = os.path.join(experiment_dir, "config.json")
with open(pid_file_path, "r") as pid_file:
pid_data = json.load(pid_file)
with open(pid_file_path, "w") as pid_file:
pid_data.pop("process_pids", None)
json.dump(pid_data, pid_file, indent=4)
# Final model
model_add.append(
os.path.join(
experiment_dir, f"{model_name}_{epoch}e_{global_step}s.pth"
)
)
done = True
if model_add:
ckpt = (
net_g.module.state_dict()
if hasattr(net_g, "module")
else net_g.state_dict()
)
for m in model_add:
if not os.path.exists(m):
extract_model(
ckpt=ckpt,
sr=sample_rate,
pitch_guidance=pitch_guidance
== True, # converting 1/0 to True/False,
name=model_name,
model_dir=m,
epoch=epoch,
step=global_step,
version=version,
hps=hps,
overtrain_info=overtrain_info,
)
# Clean-up old best epochs
for m in model_del:
os.remove(m)
# Print training progress
lowest_value_rounded = float(lowest_value["value"])
lowest_value_rounded = round(lowest_value_rounded, 3)
record = f"{model_name} | epoch={epoch} | step={global_step} | {epoch_recorder.record()}"
if epoch > 1:
record = (
record
+ f" | lowest_value={lowest_value_rounded} (epoch {lowest_value['epoch']} and step {lowest_value['step']})"
)
if overtraining_detector:
remaining_epochs_gen = overtraining_threshold - consecutive_increases_gen
remaining_epochs_disc = (
overtraining_threshold * 2 - consecutive_increases_disc
)
record = (
record
+ f" | Number of epochs remaining for overtraining: g/total: {remaining_epochs_gen} d/total: {remaining_epochs_disc} | smoothed_loss_gen={smoothed_value_gen:.3f} | smoothed_loss_disc={smoothed_value_disc:.3f}"
)
print(record)
last_loss_gen_all = loss_gen_all
if done:
os._exit(2333333)
def check_overtraining(smoothed_loss_history, threshold, epsilon=0.004):
"""
Checks for overtraining based on the smoothed loss history.
Args:
smoothed_loss_history (list): List of smoothed losses for each epoch.
threshold (int): Number of consecutive epochs with insignificant changes or increases to consider overtraining.
epsilon (float): The maximum change considered insignificant.
"""
if len(smoothed_loss_history) < threshold + 1:
return False
for i in range(-threshold, -1):
if smoothed_loss_history[i + 1] > smoothed_loss_history[i]:
return True
if abs(smoothed_loss_history[i + 1] - smoothed_loss_history[i]) >= epsilon:
return False
return True
def update_exponential_moving_average(
smoothed_loss_history, new_value, smoothing=0.987
):
"""
Updates the exponential moving average with a new value.
Args:
smoothed_loss_history (list): List of smoothed values.
new_value (float): New value to be added.
smoothing (float): Smoothing factor.
"""
if smoothed_loss_history:
smoothed_value = (
smoothing * smoothed_loss_history[-1] + (1 - smoothing) * new_value
)
else:
smoothed_value = new_value
smoothed_loss_history.append(smoothed_value)
return smoothed_value
def save_to_json(
file_path,
loss_disc_history,
smoothed_loss_disc_history,
loss_gen_history,
smoothed_loss_gen_history,
):
"""
Save the training history to a JSON file.
"""
data = {
"loss_disc_history": loss_disc_history,
"smoothed_loss_disc_history": smoothed_loss_disc_history,
"loss_gen_history": loss_gen_history,
"smoothed_loss_gen_history": smoothed_loss_gen_history,
}
with open(file_path, "w") as f:
json.dump(data, f)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
main()
|