File size: 18,892 Bytes
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
f017d24
 
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f017d24
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f017d24
a8c39f5
 
 
 
 
 
 
 
 
 
f017d24
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f017d24
 
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import os
import sys
import time
import torch
import librosa
import logging
import traceback
import numpy as np
import soundfile as sf
import noisereduce as nr
from pedalboard import (
    Pedalboard,
)
from pedalboard_native import (
    Chorus,
    Distortion,
    Reverb,
    PitchShift,
    Limiter,
    Gain,
    Bitcrush,
    Clipping,
    Compressor,
    Delay,
)

now_dir = os.getcwd()
sys.path.append(now_dir)

from rvc.infer.pipeline import Pipeline as VC
from rvc.lib.utils import load_audio_infer, load_embedding
from rvc.lib.tools.split_audio import process_audio, merge_audio
from rvc.lib.algorithm.synthesizers import Synthesizer
from rvc.configs.config import Config

logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)
logging.getLogger("faiss").setLevel(logging.WARNING)
logging.getLogger("faiss.loader").setLevel(logging.WARNING)


class VoiceConverter:
    """
    A class for performing voice conversion using the Retrieval-Based Voice Conversion (RVC) method.
    """

    def __init__(self):
        """
        Initializes the VoiceConverter with default configuration, and sets up models and parameters.
        """
        self.config = Config()  # Load RVC configuration
        self.hubert_model = (
            None  # Initialize the Hubert model (for embedding extraction)
        )
        self.last_embedder_model = None  # Last used embedder model
        self.tgt_sr = None  # Target sampling rate for the output audio
        self.net_g = None  # Generator network for voice conversion
        self.vc = None  # Voice conversion pipeline instance
        self.cpt = None  # Checkpoint for loading model weights
        self.version = None  # Model version
        self.n_spk = None  # Number of speakers in the model
        self.use_f0 = None  # Whether the model uses F0
        self.loaded_model = None

    def load_hubert(self, embedder_model: str, embedder_model_custom: str | None = None):
        """
        Loads the HuBERT model for speaker embedding extraction.

        Args:
            embedder_model (str): Path to the pre-trained HuBERT model.
            embedder_model_custom (str): Path to the custom HuBERT model.
        """
        self.hubert_model = load_embedding(embedder_model, embedder_model_custom)
        self.hubert_model.to(self.config.device)
        self.hubert_model = (
            self.hubert_model.half()
            if self.config.is_half
            else self.hubert_model.float()
        )
        self.hubert_model.eval()

    @staticmethod
    def remove_audio_noise(data, sr, reduction_strength=0.7):
        """
        Removes noise from an audio file using the NoiseReduce library.

        Args:
            data (numpy.ndarray): The audio data as a NumPy array.
            sr (int): The sample rate of the audio data.
            reduction_strength (float): Strength of the noise reduction. Default is 0.7.
        """
        try:
            reduced_noise = nr.reduce_noise(
                y=data, sr=sr, prop_decrease=reduction_strength
            )
            return reduced_noise
        except Exception as error:
            print(f"An error occurred removing audio noise: {error}")
            return None

    @staticmethod
    def convert_audio_format(input_path, output_path, output_format):
        """
        Converts an audio file to a specified output format.

        Args:
            input_path (str): Path to the input audio file.
            output_path (str): Path to the output audio file.
            output_format (str): Desired audio format (e.g., "WAV", "MP3").
        """
        try:
            if output_format != "WAV":
                print(f"Converting audio to {output_format} format...")
                audio, sample_rate = librosa.load(input_path, sr=None)
                common_sample_rates = [
                    8000,
                    11025,
                    12000,
                    16000,
                    22050,
                    24000,
                    32000,
                    44100,
                    48000,
                ]
                target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate))
                audio = librosa.resample(
                    audio, orig_sr=sample_rate, target_sr=target_sr
                )
                sf.write(output_path, audio, target_sr, format=output_format.lower())
            return output_path
        except Exception as error:
            print(f"An error occurred converting the audio format: {error}")

    @staticmethod
    def post_process_audio(
        audio_input,
        sample_rate,
        **kwargs,
    ):
        board = Pedalboard()
        if kwargs.get("reverb", False):
            reverb = Reverb(
                room_size=kwargs.get("reverb_room_size", 0.5),
                damping=kwargs.get("reverb_damping", 0.5),
                wet_level=kwargs.get("reverb_wet_level", 0.33),
                dry_level=kwargs.get("reverb_dry_level", 0.4),
                width=kwargs.get("reverb_width", 1.0),
                freeze_mode=kwargs.get("reverb_freeze_mode", 0),
            )
            board.append(reverb)
        if kwargs.get("pitch_shift", False):
            pitch_shift = PitchShift(semitones=kwargs.get("pitch_shift_semitones", 0))
            board.append(pitch_shift)
        if kwargs.get("limiter", False):
            limiter = Limiter(
                threshold_db=kwargs.get("limiter_threshold", -6),
                release_ms=kwargs.get("limiter_release", 0.05),
            )
            board.append(limiter)
        if kwargs.get("gain", False):
            gain = Gain(gain_db=kwargs.get("gain_db", 0))
            board.append(gain)
        if kwargs.get("distortion", False):
            distortion = Distortion(drive_db=kwargs.get("distortion_gain", 25))
            board.append(distortion)
        if kwargs.get("chorus", False):
            chorus = Chorus(
                rate_hz=kwargs.get("chorus_rate", 1.0),
                depth=kwargs.get("chorus_depth", 0.25),
                centre_delay_ms=kwargs.get("chorus_delay", 7),
                feedback=kwargs.get("chorus_feedback", 0.0),
                mix=kwargs.get("chorus_mix", 0.5),
            )
            board.append(chorus)
        if kwargs.get("bitcrush", False):
            bitcrush = Bitcrush(bit_depth=kwargs.get("bitcrush_bit_depth", 8))
            board.append(bitcrush)
        if kwargs.get("clipping", False):
            clipping = Clipping(threshold_db=kwargs.get("clipping_threshold", 0))
            board.append(clipping)
        if kwargs.get("compressor", False):
            compressor = Compressor(
                threshold_db=kwargs.get("compressor_threshold", 0),
                ratio=kwargs.get("compressor_ratio", 1),
                attack_ms=kwargs.get("compressor_attack", 1.0),
                release_ms=kwargs.get("compressor_release", 100),
            )
            board.append(compressor)
        if kwargs.get("delay", False):
            delay = Delay(
                delay_seconds=kwargs.get("delay_seconds", 0.5),
                feedback=kwargs.get("delay_feedback", 0.0),
                mix=kwargs.get("delay_mix", 0.5),
            )
            board.append(delay)
        return board(audio_input, sample_rate)

    def convert_audio(
        self,
        audio_input_path: str,
        audio_output_path: str,
        model_path: str,
        index_path: str,
        pitch: int = 0,
        f0_file: str | None = None,
        f0_method: str = "rmvpe",
        index_rate: float = 0.75,
        volume_envelope: float = 1,
        protect: float = 0.5,
        hop_length: int = 128,
        split_audio: bool = False,
        f0_autotune: bool = False,
        f0_autotune_strength: float = 1,
        filter_radius: int = 3,
        embedder_model: str = "contentvec",
        embedder_model_custom: str | None = None,
        clean_audio: bool = False,
        clean_strength: float = 0.5,
        export_format: str = "WAV",
        upscale_audio: bool = False,
        post_process: bool = False,
        resample_sr: int = 0,
        sid: int = 0,
        **kwargs,
    ):
        """
        Performs voice conversion on the input audio.

        Args:
            pitch (int): Key for F0 up-sampling.
            filter_radius (int): Radius for filtering.
            index_rate (float): Rate for index matching.
            volume_envelope (int): RMS mix rate.
            protect (float): Protection rate for certain audio segments.
            hop_length (int): Hop length for audio processing.
            f0_method (str): Method for F0 extraction.
            audio_input_path (str): Path to the input audio file.
            audio_output_path (str): Path to the output audio file.
            model_path (str): Path to the voice conversion model.
            index_path (str): Path to the index file.
            split_audio (bool): Whether to split the audio for processing.
            f0_autotune (bool): Whether to use F0 autotune.
            clean_audio (bool): Whether to clean the audio.
            clean_strength (float): Strength of the audio cleaning.
            export_format (str): Format for exporting the audio.
            upscale_audio (bool): Whether to upscale the audio.
            f0_file (str): Path to the F0 file.
            embedder_model (str): Path to the embedder model.
            embedder_model_custom (str): Path to the custom embedder model.
            resample_sr (int, optional): Resample sampling rate. Default is 0.
            sid (int, optional): Speaker ID. Default is 0.
            **kwargs: Additional keyword arguments.
        """
        self.get_vc(model_path, sid)
        try:
            start_time = time.time()
            print(f"Converting audio '{audio_input_path}'...")

            if upscale_audio == True:
                from audio_upscaler import upscale

                upscale(audio_input_path, audio_input_path)
            audio = load_audio_infer(
                audio_input_path,
                16000,
                **kwargs,
            )
            audio_max = np.abs(audio).max() / 0.95

            if audio_max > 1:
                audio /= audio_max

            if not self.hubert_model or embedder_model != self.last_embedder_model:
                self.load_hubert(embedder_model, embedder_model_custom)
                self.last_embedder_model = embedder_model

            file_index = (
                index_path.strip()
                .strip('"')
                .strip("\n")
                .strip('"')
                .strip()
                .replace("trained", "added")
            )

            if self.tgt_sr != resample_sr >= 16000:
                self.tgt_sr = resample_sr

            if split_audio:
                chunks, intervals = process_audio(audio, 16000)
                print(f"Audio split into {len(chunks)} chunks for processing.")
            else:
                chunks = []
                chunks.append(audio)

            converted_chunks = []
            for c in chunks:
                if self.vc is None:
                    raise Exception("Voice conversion model not loaded.")
                audio_opt = self.vc.pipeline(
                    model=self.hubert_model,
                    net_g=self.net_g,
                    sid=sid,
                    audio=c,
                    pitch=pitch,
                    f0_method=f0_method,
                    file_index=file_index,
                    index_rate=index_rate,
                    pitch_guidance=self.use_f0,
                    filter_radius=filter_radius,
                    volume_envelope=volume_envelope,
                    version=self.version,
                    protect=protect,
                    hop_length=hop_length,
                    f0_autotune=f0_autotune,
                    f0_autotune_strength=f0_autotune_strength,
                    f0_file=f0_file,
                )
                converted_chunks.append(audio_opt)
                if split_audio:
                    print(f"Converted audio chunk {len(converted_chunks)}")

            if split_audio:
                audio_opt = merge_audio(converted_chunks, intervals, 16000, self.tgt_sr)
            else:
                audio_opt = converted_chunks[0]

            if clean_audio:
                cleaned_audio = self.remove_audio_noise(
                    audio_opt, self.tgt_sr, clean_strength
                )
                if cleaned_audio is not None:
                    audio_opt = cleaned_audio

            if post_process:
                audio_opt = self.post_process_audio(
                    audio_input=audio_opt,
                    sample_rate=self.tgt_sr,
                    **kwargs,
                )

            sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV")
            output_path_format = audio_output_path.replace(
                ".wav", f".{export_format.lower()}"
            )
            audio_output_path = self.convert_audio_format(
                audio_output_path, output_path_format, export_format
            )

            elapsed_time = time.time() - start_time
            print(
                f"Conversion completed at '{audio_output_path}' in {elapsed_time:.2f} seconds."
            )
        except Exception as error:
            print(f"An error occurred during audio conversion: {error}")
            print(traceback.format_exc())

    def convert_audio_batch(
        self,
        audio_input_paths: str,
        audio_output_path: str,
        **kwargs,
    ):
        """
        Performs voice conversion on a batch of input audio files.

        Args:
            audio_input_paths (str): List of paths to the input audio files.
            audio_output_path (str): Path to the output audio file.
            resample_sr (int, optional): Resample sampling rate. Default is 0.
            sid (int, optional): Speaker ID. Default is 0.
            **kwargs: Additional keyword arguments.
        """
        pid = os.getpid()
        try:
            with open(
                os.path.join(now_dir, "assets", "infer_pid.txt"), "w"
            ) as pid_file:
                pid_file.write(str(pid))
            start_time = time.time()
            print(f"Converting audio batch '{audio_input_paths}'...")
            audio_files = [
                f
                for f in os.listdir(audio_input_paths)
                if f.endswith(
                    (
                        "wav",
                        "mp3",
                        "flac",
                        "ogg",
                        "opus",
                        "m4a",
                        "mp4",
                        "aac",
                        "alac",
                        "wma",
                        "aiff",
                        "webm",
                        "ac3",
                    )
                )
            ]
            print(f"Detected {len(audio_files)} audio files for inference.")
            for a in audio_files:
                new_input = os.path.join(audio_input_paths, a)
                new_output = os.path.splitext(a)[0] + "_output.wav"
                new_output = os.path.join(audio_output_path, new_output)
                if os.path.exists(new_output):
                    continue
                self.convert_audio(
                    audio_input_path=new_input,
                    audio_output_path=new_output,
                    **kwargs,
                )
            print(f"Conversion completed at '{audio_input_paths}'.")
            elapsed_time = time.time() - start_time
            print(f"Batch conversion completed in {elapsed_time:.2f} seconds.")
        except Exception as error:
            print(f"An error occurred during audio batch conversion: {error}")
            print(traceback.format_exc())
        finally:
            os.remove(os.path.join(now_dir, "assets", "infer_pid.txt"))

    def get_vc(self, weight_root, sid):
        """
        Loads the voice conversion model and sets up the pipeline.

        Args:
            weight_root (str): Path to the model weights.
            sid (int): Speaker ID.
        """
        if sid == "" or sid == []:
            self.cleanup_model()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        if not self.loaded_model or self.loaded_model != weight_root:
            self.load_model(weight_root)
            if self.cpt is not None:
                self.setup_network()
                self.setup_vc_instance()
            self.loaded_model = weight_root

    def cleanup_model(self):
        """
        Cleans up the model and releases resources.
        """
        if self.hubert_model is not None:
            del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr
            self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        del self.net_g, self.cpt
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        self.cpt = None

    def load_model(self, weight_root):
        """
        Loads the model weights from the specified path.

        Args:
            weight_root (str): Path to the model weights.
        """
        self.cpt = (
            torch.load(weight_root, map_location="cpu")
            if os.path.isfile(weight_root)
            else None
        )

    def setup_network(self):
        """
        Sets up the network configuration based on the loaded checkpoint.
        """
        if self.cpt is not None:
            self.tgt_sr = self.cpt["config"][-1]
            self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
            self.use_f0 = self.cpt.get("f0", 1)

            self.version = self.cpt.get("version", "v1")
            self.text_enc_hidden_dim = 768 if self.version == "v2" else 256
            self.net_g = Synthesizer(
                *self.cpt["config"],
                use_f0=self.use_f0,
                text_enc_hidden_dim=self.text_enc_hidden_dim,
                is_half=self.config.is_half,
            )
            del self.net_g.enc_q
            self.net_g.load_state_dict(self.cpt["weight"], strict=False)
            self.net_g.eval().to(self.config.device)
            self.net_g = (
                self.net_g.half() if self.config.is_half else self.net_g.float()
            )

    def setup_vc_instance(self):
        """
        Sets up the voice conversion pipeline instance based on the target sampling rate and configuration.
        """
        if self.cpt is not None:
            self.vc = VC(self.tgt_sr, self.config)
            self.n_spk = self.cpt["config"][-3]