File size: 25,699 Bytes
a8c39f5
 
 
 
 
 
 
 
 
 
f017d24
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f017d24
a8c39f5
 
 
 
 
 
 
f017d24
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f017d24
 
 
 
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f017d24
 
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f017d24
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f017d24
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
import os
import gc
import re
import sys
import torch
import torch.nn.functional as F
import torchcrepe
import faiss
import librosa
import numpy as np
import numpy.typing as npt
from scipy import signal
from torch import Tensor

now_dir = os.getcwd()
sys.path.append(now_dir)

from rvc.lib.predictors.RMVPE import RMVPE0Predictor
from rvc.lib.predictors.FCPE import FCPEF0Predictor

import logging

logging.getLogger("faiss").setLevel(logging.WARNING)

# Constants for high-pass filter
FILTER_ORDER = 5
CUTOFF_FREQUENCY = 48  # Hz
SAMPLE_RATE = 16000  # Hz
bh, ah = signal.butter(
    N=FILTER_ORDER, Wn=CUTOFF_FREQUENCY, btype="high", fs=SAMPLE_RATE
)

input_audio_path2wav: dict[str, npt.NDArray] = {}


class AudioProcessor:
    """
    A class for processing audio signals, specifically for adjusting RMS levels.
    """

    @staticmethod
    def change_rms(
        source_audio: np.ndarray,
        source_rate: int,
        target_audio: np.ndarray,
        target_rate: int,
        rate: float,
    ) -> np.ndarray:
        """
        Adjust the RMS level of target_audio to match the RMS of source_audio, with a given blending rate.

        Args:
            source_audio: The source audio signal as a NumPy array.
            source_rate: The sampling rate of the source audio.
            target_audio: The target audio signal to adjust.
            target_rate: The sampling rate of the target audio.
            rate: The blending rate between the source and target RMS levels.
        """
        # Calculate RMS of both audio data
        rms1 = librosa.feature.rms(
            y=source_audio,
            frame_length=source_rate // 2 * 2,
            hop_length=source_rate // 2,
        )
        rms2 = librosa.feature.rms(
            y=target_audio,
            frame_length=target_rate // 2 * 2,
            hop_length=target_rate // 2,
        )

        # Interpolate RMS to match target audio length
        rms1 = F.interpolate(
            torch.from_numpy(rms1).float().unsqueeze(0),
            size=target_audio.shape[0],
            mode="linear",
        ).squeeze()
        rms2 = F.interpolate(
            torch.from_numpy(rms2).float().unsqueeze(0),
            size=target_audio.shape[0],
            mode="linear",
        ).squeeze()
        rms2 = torch.maximum(rms2, torch.zeros_like(rms2) + 1e-6)

        # Adjust target audio RMS based on the source audio RMS
        adjusted_audio = (
            target_audio
            * (torch.pow(rms1, 1 - rate) * torch.pow(rms2, rate - 1)).numpy()
        )
        return adjusted_audio


class Autotune:
    """
    A class for applying autotune to a given fundamental frequency (F0) contour.
    """

    def __init__(self, ref_freqs):
        """
        Initializes the Autotune class with a set of reference frequencies.

        Args:
            ref_freqs: A list of reference frequencies representing musical notes.
        """
        self.ref_freqs = ref_freqs
        self.note_dict = self.ref_freqs  # No interpolation needed

    def autotune_f0(self, f0, f0_autotune_strength):
        """
        Autotunes a given F0 contour by snapping each frequency to the closest reference frequency.

        Args:
            f0: The input F0 contour as a NumPy array.
        """
        autotuned_f0 = np.zeros_like(f0)
        for i, freq in enumerate(f0):
            closest_note = min(self.note_dict, key=lambda x: abs(x - freq))
            autotuned_f0[i] = freq + (closest_note - freq) * f0_autotune_strength
        return autotuned_f0


class Pipeline:
    """
    The main pipeline class for performing voice conversion, including preprocessing, F0 estimation,
    voice conversion using a model, and post-processing.
    """

    def __init__(self, tgt_sr, config):
        """
        Initializes the Pipeline class with target sampling rate and configuration parameters.

        Args:
            tgt_sr: The target sampling rate for the output audio.
            config: A configuration object containing various parameters for the pipeline.
        """
        self.x_pad = config.x_pad
        self.x_query = config.x_query
        self.x_center = config.x_center
        self.x_max = config.x_max
        self.is_half = config.is_half
        self.sample_rate = 16000
        self.window = 160
        self.t_pad = self.sample_rate * self.x_pad
        self.t_pad_tgt = tgt_sr * self.x_pad
        self.t_pad2 = self.t_pad * 2
        self.t_query = self.sample_rate * self.x_query
        self.t_center = self.sample_rate * self.x_center
        self.t_max = self.sample_rate * self.x_max
        self.time_step = self.window / self.sample_rate * 1000
        self.f0_min = 50
        self.f0_max = 1100
        self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
        self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
        self.device = config.device
        self.ref_freqs = [
            49.00,  # G1
            51.91,  # G#1 / Ab1
            55.00,  # A1
            58.27,  # A#1 / Bb1
            61.74,  # B1
            65.41,  # C2
            69.30,  # C#2 / Db2
            73.42,  # D2
            77.78,  # D#2 / Eb2
            82.41,  # E2
            87.31,  # F2
            92.50,  # F#2 / Gb2
            98.00,  # G2
            103.83,  # G#2 / Ab2
            110.00,  # A2
            116.54,  # A#2 / Bb2
            123.47,  # B2
            130.81,  # C3
            138.59,  # C#3 / Db3
            146.83,  # D3
            155.56,  # D#3 / Eb3
            164.81,  # E3
            174.61,  # F3
            185.00,  # F#3 / Gb3
            196.00,  # G3
            207.65,  # G#3 / Ab3
            220.00,  # A3
            233.08,  # A#3 / Bb3
            246.94,  # B3
            261.63,  # C4
            277.18,  # C#4 / Db4
            293.66,  # D4
            311.13,  # D#4 / Eb4
            329.63,  # E4
            349.23,  # F4
            369.99,  # F#4 / Gb4
            392.00,  # G4
            415.30,  # G#4 / Ab4
            440.00,  # A4
            466.16,  # A#4 / Bb4
            493.88,  # B4
            523.25,  # C5
            554.37,  # C#5 / Db5
            587.33,  # D5
            622.25,  # D#5 / Eb5
            659.25,  # E5
            698.46,  # F5
            739.99,  # F#5 / Gb5
            783.99,  # G5
            830.61,  # G#5 / Ab5
            880.00,  # A5
            932.33,  # A#5 / Bb5
            987.77,  # B5
            1046.50,  # C6
        ]
        self.autotune = Autotune(self.ref_freqs)
        self.note_dict = self.autotune.note_dict
        self.model_rmvpe = RMVPE0Predictor(
            os.path.join("rvc", "models", "predictors", "rmvpe.pt"),
            is_half=self.is_half,
            device=self.device,
        )

    def get_f0_crepe(
        self,
        x,
        f0_min,
        f0_max,
        p_len,
        hop_length,
        model="full",
    ):
        """
        Estimates the fundamental frequency (F0) of a given audio signal using the Crepe model.

        Args:
            x: The input audio signal as a NumPy array.
            f0_min: Minimum F0 value to consider.
            f0_max: Maximum F0 value to consider.
            p_len: Desired length of the F0 output.
            hop_length: Hop length for the Crepe model.
            model: Crepe model size to use ("full" or "tiny").
        """
        x = x.astype(np.float32)
        x /= np.quantile(np.abs(x), 0.999)
        audio = torch.from_numpy(x).to(self.device, copy=True)
        audio = torch.unsqueeze(audio, dim=0)
        if audio.ndim == 2 and audio.shape[0] > 1:
            audio = torch.mean(audio, dim=0, keepdim=True).detach()
        audio = audio.detach()
        pitch: Tensor = torchcrepe.predict(
            audio,
            self.sample_rate,
            hop_length,
            f0_min,
            f0_max,
            model,
            batch_size=hop_length * 2,
            device=self.device,
            pad=True,
        )
        p_len = p_len or x.shape[0] // hop_length
        source = np.array(pitch.squeeze(0).cpu().float().numpy())
        source[source < 0.001] = np.nan
        target = np.interp(
            np.arange(0, len(source) * p_len, len(source)) / p_len,
            np.arange(0, len(source)),
            source,
        )
        f0 = np.nan_to_num(target)
        return f0

    def get_f0_hybrid(
        self,
        methods_str,
        x,
        f0_min,
        f0_max,
        p_len,
        hop_length,
    ):
        """
        Estimates the fundamental frequency (F0) using a hybrid approach combining multiple methods.

        Args:
            methods_str: A string specifying the methods to combine (e.g., "hybrid[crepe+rmvpe]").
            x: The input audio signal as a NumPy array.
            f0_min: Minimum F0 value to consider.
            f0_max: Maximum F0 value to consider.
            p_len: Desired length of the F0 output.
            hop_length: Hop length for F0 estimation methods.
        """
        methods_str = re.search("hybrid\[(.+)\]", methods_str)
        if methods_str:
            methods = [method.strip() for method in methods_str.group(1).split("+")]
        f0_computation_stack = []
        print(f"Calculating f0 pitch estimations for methods {str(methods)}")
        x = x.astype(np.float32)
        x /= np.quantile(np.abs(x), 0.999)
        for method in methods:
            f0 = None
            if method == "crepe":
                raise ValueError("Crepe method is not supported in hybrid mode")
                # f0 = self.get_f0_crepe_computation(
                #     x, f0_min, f0_max, p_len, int(hop_length)
                # )
            elif method == "rmvpe":
                f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
                f0 = f0[1:]
            elif method == "fcpe":
                self.model_fcpe = FCPEF0Predictor(
                    os.path.join("rvc", "models", "predictors", "fcpe.pt"),
                    f0_min=int(f0_min),
                    f0_max=int(f0_max),
                    dtype=torch.float32,
                    device=self.device,
                    sample_rate=self.sample_rate,
                    threshold=0.03,
                )
                f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
                del self.model_fcpe
                gc.collect()
            f0_computation_stack.append(f0)

        f0_computation_stack = [fc for fc in f0_computation_stack if fc is not None]
        f0_median_hybrid = None
        if len(f0_computation_stack) == 1:
            f0_median_hybrid = f0_computation_stack[0]
        else:
            f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
        return f0_median_hybrid

    def get_f0(
        self,
        input_audio_path: str,
        x: npt.NDArray,
        p_len,
        pitch,
        f0_method,
        filter_radius,
        hop_length,
        f0_autotune,
        f0_autotune_strength,
        inp_f0=None,
    ):
        """
        Estimates the fundamental frequency (F0) of a given audio signal using various methods.

        Args:
            input_audio_path: Path to the input audio file.
            x: The input audio signal as a NumPy array.
            p_len: Desired length of the F0 output.
            pitch: Key to adjust the pitch of the F0 contour.
            f0_method: Method to use for F0 estimation (e.g., "crepe").
            filter_radius: Radius for median filtering the F0 contour.
            hop_length: Hop length for F0 estimation methods.
            f0_autotune: Whether to apply autotune to the F0 contour.
            inp_f0: Optional input F0 contour to use instead of estimating.
        """
        global input_audio_path2wav
        if f0_method == "crepe":
            f0 = self.get_f0_crepe(x, self.f0_min, self.f0_max, p_len, int(hop_length))
        elif f0_method == "crepe-tiny":
            f0 = self.get_f0_crepe(
                x, self.f0_min, self.f0_max, p_len, int(hop_length), "tiny"
            )
        elif f0_method == "rmvpe":
            f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
        elif f0_method == "fcpe":
            self.model_fcpe = FCPEF0Predictor(
                os.path.join("rvc", "models", "predictors", "fcpe.pt"),
                f0_min=int(self.f0_min),
                f0_max=int(self.f0_max),
                dtype=torch.float32,
                device=self.device,
                sample_rate=self.sample_rate,
                threshold=0.03,
            )
            f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
            del self.model_fcpe
            gc.collect()
        elif "hybrid" in f0_method:
            input_audio_path2wav[input_audio_path] = x.astype(np.double)
            f0 = self.get_f0_hybrid(
                f0_method,
                x,
                self.f0_min,
                self.f0_max,
                p_len,
                hop_length,
            )

        if f0_autotune is True:
            f0 = self.autotune.autotune_f0(f0, f0_autotune_strength)

        f0 *= pow(2, pitch / 12)
        tf0 = self.sample_rate // self.window
        if inp_f0 is not None:
            delta_t = np.round(
                (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
            ).astype("int16")
            replace_f0 = np.interp(
                list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
            )
            shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
            f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
                :shape
            ]
        f0bak = f0.copy()
        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
            self.f0_mel_max - self.f0_mel_min
        ) + 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > 255] = 255
        f0_coarse = np.rint(f0_mel).astype(np.int32)

        return f0_coarse, f0bak

    def voice_conversion(
        self,
        model,
        net_g,
        sid,
        audio0,
        pitch,
        pitchf,
        index,
        big_npy,
        index_rate,
        version,
        protect,
    ):
        """
        Performs voice conversion on a given audio segment.

        Args:
            model: The feature extractor model.
            net_g: The generative model for synthesizing speech.
            sid: Speaker ID for the target voice.
            audio0: The input audio segment.
            pitch: Quantized F0 contour for pitch guidance.
            pitchf: Original F0 contour for pitch guidance.
            index: FAISS index for speaker embedding retrieval.
            big_npy: Speaker embeddings stored in a NumPy array.
            index_rate: Blending rate for speaker embedding retrieval.
            version: Model version ("v1" or "v2").
            protect: Protection level for preserving the original pitch.
        """
        with torch.no_grad():
            pitch_guidance = pitch != None and pitchf != None
            # prepare source audio
            feats = (
                torch.from_numpy(audio0).half()
                if self.is_half
                else torch.from_numpy(audio0).float()
            )
            feats = feats.mean(-1) if feats.dim() == 2 else feats
            assert feats.dim() == 1, feats.dim()
            feats = feats.view(1, -1).to(self.device)
            # extract features
            feats = model(feats)["last_hidden_state"]
            feats = (
                model.final_proj(feats[0]).unsqueeze(0) if version == "v1" else feats
            )
            # make a copy for pitch guidance and protection
            feats0 = feats.clone() if pitch_guidance else None
            if (
                index
            ):  # set by parent function, only true if index is available, loaded, and index rate > 0
                feats = self._retrieve_speaker_embeddings(
                    feats, index, big_npy, index_rate
                )
            # feature upsampling
            feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(
                0, 2, 1
            )
            # adjust the length if the audio is short
            p_len = min(audio0.shape[0] // self.window, feats.shape[1])
            if pitch_guidance:
                feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
                    0, 2, 1
                )
                pitch, pitchf = pitch[:, :p_len], pitchf[:, :p_len]
                # Pitch protection blending
                if protect < 0.5:
                    pitchff = pitchf.clone()
                    pitchff[pitchf > 0] = 1
                    pitchff[pitchf < 1] = protect
                    feats = feats * pitchff.unsqueeze(-1) + feats0 * (
                        1 - pitchff.unsqueeze(-1)
                    )
                    feats = feats.to(feats0.dtype)
            else:
                pitch, pitchf = None, None
            p_len = torch.tensor([p_len], device=self.device).long()
            audio1 = (
                (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
                .data.cpu()
                .float()
                .numpy()
            )
            # clean up
            del feats, feats0, p_len
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
        return audio1

    def _retrieve_speaker_embeddings(self, feats, index, big_npy, index_rate):
        npy = feats[0].cpu().numpy()
        npy = npy.astype("float32") if self.is_half else npy
        score, ix = index.search(npy, k=8)
        weight = np.square(1 / score)
        weight /= weight.sum(axis=1, keepdims=True)
        npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
        npy = npy.astype("float16") if self.is_half else npy
        feats = (
            torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
            + (1 - index_rate) * feats
        )
        return feats

    def pipeline(
        self,
        model,
        net_g,
        sid,
        audio,
        pitch,
        f0_method,
        file_index,
        index_rate,
        pitch_guidance,
        filter_radius,
        volume_envelope,
        version,
        protect,
        hop_length,
        f0_autotune,
        f0_autotune_strength,
        f0_file,
    ):
        """
        The main pipeline function for performing voice conversion.

        Args:
            model: The feature extractor model.
            net_g: The generative model for synthesizing speech.
            sid: Speaker ID for the target voice.
            audio: The input audio signal.
            input_audio_path: Path to the input audio file.
            pitch: Key to adjust the pitch of the F0 contour.
            f0_method: Method to use for F0 estimation.
            file_index: Path to the FAISS index file for speaker embedding retrieval.
            index_rate: Blending rate for speaker embedding retrieval.
            pitch_guidance: Whether to use pitch guidance during voice conversion.
            filter_radius: Radius for median filtering the F0 contour.
            tgt_sr: Target sampling rate for the output audio.
            resample_sr: Resampling rate for the output audio.
            volume_envelope: Blending rate for adjusting the RMS level of the output audio.
            version: Model version.
            protect: Protection level for preserving the original pitch.
            hop_length: Hop length for F0 estimation methods.
            f0_autotune: Whether to apply autotune to the F0 contour.
            f0_file: Path to a file containing an F0 contour to use.
        """
        if file_index != "" and os.path.exists(file_index) and index_rate > 0:
            try:
                index = faiss.read_index(file_index)
                big_npy = index.reconstruct_n(0, index.ntotal)
            except Exception as error:
                print(f"An error occurred reading the FAISS index: {error}")
                index = big_npy = None
        else:
            index = big_npy = None
        audio = signal.filtfilt(bh, ah, audio)
        audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
        opt_ts = []
        if audio_pad.shape[0] > self.t_max:
            audio_sum = np.zeros_like(audio)
            for i in range(self.window):
                audio_sum += audio_pad[i : i - self.window]
            for t in range(self.t_center, audio.shape[0], self.t_center):
                opt_ts.append(
                    t
                    - self.t_query
                    + np.where(
                        np.abs(audio_sum[t - self.t_query : t + self.t_query])
                        == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
                    )[0][0]
                )
        s = 0
        audio_opt = []
        t = None
        audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
        p_len = audio_pad.shape[0] // self.window
        inp_f0 = None
        if hasattr(f0_file, "name"):
            try:
                with open(f0_file.name, "r") as f:
                    lines = f.read().strip("\n").split("\n")
                inp_f0 = []
                for line in lines:
                    inp_f0.append([float(i) for i in line.split(",")])
                inp_f0 = np.array(inp_f0, dtype="float32")
            except Exception as error:
                print(f"An error occurred reading the F0 file: {error}")
        sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
        if pitch_guidance:
            pitch, pitchf = self.get_f0(
                "input_audio_path",  # questionable purpose of making a key for an array
                audio_pad,
                p_len,
                pitch,
                f0_method,
                filter_radius,
                hop_length,
                f0_autotune,
                f0_autotune_strength,
                inp_f0,
            )
            pitch = pitch[:p_len]
            pitchf = pitchf[:p_len]
            if self.device == "mps":
                pitchf = pitchf.astype(np.float32)
            pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
            pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
        for t in opt_ts:
            t = t // self.window * self.window
            if pitch_guidance:
                audio_opt.append(
                    self.voice_conversion(
                        model,
                        net_g,
                        sid,
                        audio_pad[s : t + self.t_pad2 + self.window],
                        pitch[:, s // self.window : (t + self.t_pad2) // self.window],
                        pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
                        index,
                        big_npy,
                        index_rate,
                        version,
                        protect,
                    )[self.t_pad_tgt : -self.t_pad_tgt]
                )
            else:
                audio_opt.append(
                    self.voice_conversion(
                        model,
                        net_g,
                        sid,
                        audio_pad[s : t + self.t_pad2 + self.window],
                        None,
                        None,
                        index,
                        big_npy,
                        index_rate,
                        version,
                        protect,
                    )[self.t_pad_tgt : -self.t_pad_tgt]
                )
            s = t
        if pitch_guidance:
            audio_opt.append(
                self.voice_conversion(
                    model,
                    net_g,
                    sid,
                    audio_pad[t:],
                    pitch[:, t // self.window :] if t is not None else pitch,
                    pitchf[:, t // self.window :] if t is not None else pitchf,
                    index,
                    big_npy,
                    index_rate,
                    version,
                    protect,
                )[self.t_pad_tgt : -self.t_pad_tgt]
            )
        else:
            audio_opt.append(
                self.voice_conversion(
                    model,
                    net_g,
                    sid,
                    audio_pad[t:],
                    None,
                    None,
                    index,
                    big_npy,
                    index_rate,
                    version,
                    protect,
                )[self.t_pad_tgt : -self.t_pad_tgt]
            )
        audio_opt = np.concatenate(audio_opt)
        if volume_envelope != 1:
            audio_opt = AudioProcessor.change_rms(
                audio, self.sample_rate, audio_opt, self.sample_rate, volume_envelope
            )
        # if resample_sr >= self.sample_rate and tgt_sr != resample_sr:
        #    audio_opt = librosa.resample(
        #        audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
        #    )
        # audio_max = np.abs(audio_opt).max() / 0.99
        # max_int16 = 32768
        # if audio_max > 1:
        #    max_int16 /= audio_max
        # audio_opt = (audio_opt * 32768).astype(np.int16)
        audio_max = np.abs(audio_opt).max() / 0.99
        if audio_max > 1:
            audio_opt /= audio_max
        if pitch_guidance:
            del pitch, pitchf
        del sid
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return audio_opt