File size: 10,014 Bytes
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os
import sys
import glob
import time
import tqdm
import torch
import torchcrepe
import numpy as np
import concurrent.futures
import multiprocessing as mp
import json
import shutil
from distutils.util import strtobool

now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))

# Zluda hijack
import rvc.lib.zluda

from rvc.lib.utils import load_audio, load_embedding
from rvc.train.extract.preparing_files import generate_config, generate_filelist
from rvc.lib.predictors.RMVPE import RMVPE0Predictor
from rvc.configs.config import Config

# Load config
config = Config()

mp.set_start_method("spawn", force=True)


class FeatureInput:
    """Class for F0 extraction."""

    def __init__(self, sample_rate=16000, hop_size=160, device="cpu"):
        self.fs = sample_rate
        self.hop = hop_size
        self.f0_bin = 256
        self.f0_max = 1100.0
        self.f0_min = 50.0
        self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
        self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
        self.device = device
        self.model_rmvpe = None

    def compute_f0(self, np_arr, f0_method, hop_length):
        """Extract F0 using the specified method."""
        if f0_method == "crepe":
            return self.get_crepe(np_arr, hop_length)
        elif f0_method == "rmvpe":
            return self.model_rmvpe.infer_from_audio(np_arr, thred=0.03)
        else:
            raise ValueError(f"Unknown F0 method: {f0_method}")

    def get_crepe(self, x, hop_length):
        """Extract F0 using CREPE."""
        audio = torch.from_numpy(x.astype(np.float32)).to(self.device)
        audio /= torch.quantile(torch.abs(audio), 0.999)
        audio = audio.unsqueeze(0)
        pitch = torchcrepe.predict(
            audio,
            self.fs,
            hop_length,
            self.f0_min,
            self.f0_max,
            "full",
            batch_size=hop_length * 2,
            device=audio.device,
            pad=True,
        )
        source = pitch.squeeze(0).cpu().float().numpy()
        source[source < 0.001] = np.nan
        target = np.interp(
            np.arange(0, len(source) * (x.size // self.hop), len(source))
            / (x.size // self.hop),
            np.arange(0, len(source)),
            source,
        )
        return np.nan_to_num(target)

    def coarse_f0(self, f0):
        """Convert F0 to coarse F0."""
        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel = np.clip(
            (f0_mel - self.f0_mel_min)
            * (self.f0_bin - 2)
            / (self.f0_mel_max - self.f0_mel_min)
            + 1,
            1,
            self.f0_bin - 1,
        )
        return np.rint(f0_mel).astype(int)

    def process_file(self, file_info, f0_method, hop_length):
        """Process a single audio file for F0 extraction."""
        inp_path, opt_path1, opt_path2, _ = file_info

        if os.path.exists(opt_path1) and os.path.exists(opt_path2):
            return

        try:
            np_arr = load_audio(inp_path, 16000)
            feature_pit = self.compute_f0(np_arr, f0_method, hop_length)
            np.save(opt_path2, feature_pit, allow_pickle=False)
            coarse_pit = self.coarse_f0(feature_pit)
            np.save(opt_path1, coarse_pit, allow_pickle=False)
        except Exception as error:
            print(
                f"An error occurred extracting file {inp_path} on {self.device}: {error}"
            )

    def process_files(
        self, files, f0_method, hop_length, device_num, device, n_threads
    ):
        """Process multiple files."""
        self.device = device
        if f0_method == "rmvpe":
            self.model_rmvpe = RMVPE0Predictor(
                os.path.join("rvc", "models", "predictors", "rmvpe.pt"),
                is_half=False,
                device=device,
            )
        else:
            n_threads = 1

        n_threads = 1 if n_threads == 0 else n_threads

        def process_file_wrapper(file_info):
            self.process_file(file_info, f0_method, hop_length)

        with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar:
            # using multi-threading
            with concurrent.futures.ThreadPoolExecutor(
                max_workers=n_threads
            ) as executor:
                futures = [
                    executor.submit(process_file_wrapper, file_info)
                    for file_info in files
                ]
                for future in concurrent.futures.as_completed(futures):
                    pbar.update(1)


def run_pitch_extraction(files, devices, f0_method, hop_length, num_processes):
    devices_str = ", ".join(devices)
    print(
        f"Starting pitch extraction with {num_processes} cores on {devices_str} using {f0_method}..."
    )
    start_time = time.time()
    fe = FeatureInput()
    # split the task between devices
    ps = []
    num_devices = len(devices)
    for i, device in enumerate(devices):
        p = mp.Process(
            target=fe.process_files,
            args=(
                files[i::num_devices],
                f0_method,
                hop_length,
                i,
                device,
                num_processes // num_devices,
            ),
        )
        ps.append(p)
        p.start()
    for i, device in enumerate(devices):
        ps[i].join()

    elapsed_time = time.time() - start_time
    print(f"Pitch extraction completed in {elapsed_time:.2f} seconds.")


def process_file_embedding(
    files, version, embedder_model, embedder_model_custom, device_num, device, n_threads
):
    dtype = torch.float16 if config.is_half and "cuda" in device else torch.float32
    model = load_embedding(embedder_model, embedder_model_custom).to(dtype).to(device)
    n_threads = 1 if n_threads == 0 else n_threads

    def process_file_embedding_wrapper(file_info):
        wav_file_path, _, _, out_file_path = file_info
        if os.path.exists(out_file_path):
            return
        feats = torch.from_numpy(load_audio(wav_file_path, 16000)).to(dtype).to(device)
        feats = feats.view(1, -1)
        with torch.no_grad():
            feats = model(feats)["last_hidden_state"]
            feats = (
                model.final_proj(feats[0]).unsqueeze(0) if version == "v1" else feats
            )
        feats = feats.squeeze(0).float().cpu().numpy()
        if not np.isnan(feats).any():
            np.save(out_file_path, feats, allow_pickle=False)
        else:
            print(f"{file} contains NaN values and will be skipped.")

    with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar:
        # using multi-threading
        with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as executor:
            futures = [
                executor.submit(process_file_embedding_wrapper, file_info)
                for file_info in files
            ]
            for future in concurrent.futures.as_completed(futures):
                pbar.update(1)


def run_embedding_extraction(
    files, devices, version, embedder_model, embedder_model_custom
):
    start_time = time.time()
    devices_str = ", ".join(devices)
    print(
        f"Starting embedding extraction with {num_processes} cores on {devices_str}..."
    )
    # split the task between devices
    ps = []
    num_devices = len(devices)
    for i, device in enumerate(devices):
        p = mp.Process(
            target=process_file_embedding,
            args=(
                files[i::num_devices],
                version,
                embedder_model,
                embedder_model_custom,
                i,
                device,
                num_processes // num_devices,
            ),
        )
        ps.append(p)
        p.start()
    for i, device in enumerate(devices):
        ps[i].join()
    elapsed_time = time.time() - start_time
    print(f"Embedding extraction completed in {elapsed_time:.2f} seconds.")


if __name__ == "__main__":

    exp_dir = sys.argv[1]
    f0_method = sys.argv[2]
    hop_length = int(sys.argv[3])
    num_processes = int(sys.argv[4])
    gpus = sys.argv[5]
    version = sys.argv[6]
    sample_rate = sys.argv[7]
    embedder_model = sys.argv[8]
    embedder_model_custom = sys.argv[9] if len(sys.argv) > 10 else None

    # prep
    wav_path = os.path.join(exp_dir, "sliced_audios_16k")
    os.makedirs(os.path.join(exp_dir, "f0"), exist_ok=True)
    os.makedirs(os.path.join(exp_dir, "f0_voiced"), exist_ok=True)
    os.makedirs(os.path.join(exp_dir, version + "_extracted"), exist_ok=True)
    # write to model_info.json
    chosen_embedder_model = (
        embedder_model_custom if embedder_model == "custom" else embedder_model
    )

    file_path = os.path.join(exp_dir, "model_info.json")
    if os.path.exists(file_path):
        with open(file_path, "r") as f:
            data = json.load(f)
    else:
        data = {}
    data.update(
        {
            "embedder_model": chosen_embedder_model,
        }
    )
    with open(file_path, "w") as f:
        json.dump(data, f, indent=4)

    files = []
    for file in glob.glob(os.path.join(wav_path, "*.wav")):
        file_name = os.path.basename(file)
        file_info = [
            file,  # full path to sliced 16k wav
            os.path.join(exp_dir, "f0", file_name + ".npy"),
            os.path.join(exp_dir, "f0_voiced", file_name + ".npy"),
            os.path.join(
                exp_dir, version + "_extracted", file_name.replace("wav", "npy")
            ),
        ]
        files.append(file_info)

    devices = ["cpu"] if gpus == "-" else [f"cuda:{idx}" for idx in gpus.split("-")]
    # Run Pitch Extraction
    run_pitch_extraction(files, devices, f0_method, hop_length, num_processes)

    # Run Embedding Extraction
    run_embedding_extraction(
        files, devices, version, embedder_model, embedder_model_custom
    )

    # Run Preparing Files
    generate_config(version, sample_rate, exp_dir)
    generate_filelist(exp_dir, version, sample_rate)