Spaces:
Runtime error
Runtime error
File size: 10,014 Bytes
a8c39f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import os
import sys
import glob
import time
import tqdm
import torch
import torchcrepe
import numpy as np
import concurrent.futures
import multiprocessing as mp
import json
import shutil
from distutils.util import strtobool
now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))
# Zluda hijack
import rvc.lib.zluda
from rvc.lib.utils import load_audio, load_embedding
from rvc.train.extract.preparing_files import generate_config, generate_filelist
from rvc.lib.predictors.RMVPE import RMVPE0Predictor
from rvc.configs.config import Config
# Load config
config = Config()
mp.set_start_method("spawn", force=True)
class FeatureInput:
"""Class for F0 extraction."""
def __init__(self, sample_rate=16000, hop_size=160, device="cpu"):
self.fs = sample_rate
self.hop = hop_size
self.f0_bin = 256
self.f0_max = 1100.0
self.f0_min = 50.0
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.device = device
self.model_rmvpe = None
def compute_f0(self, np_arr, f0_method, hop_length):
"""Extract F0 using the specified method."""
if f0_method == "crepe":
return self.get_crepe(np_arr, hop_length)
elif f0_method == "rmvpe":
return self.model_rmvpe.infer_from_audio(np_arr, thred=0.03)
else:
raise ValueError(f"Unknown F0 method: {f0_method}")
def get_crepe(self, x, hop_length):
"""Extract F0 using CREPE."""
audio = torch.from_numpy(x.astype(np.float32)).to(self.device)
audio /= torch.quantile(torch.abs(audio), 0.999)
audio = audio.unsqueeze(0)
pitch = torchcrepe.predict(
audio,
self.fs,
hop_length,
self.f0_min,
self.f0_max,
"full",
batch_size=hop_length * 2,
device=audio.device,
pad=True,
)
source = pitch.squeeze(0).cpu().float().numpy()
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * (x.size // self.hop), len(source))
/ (x.size // self.hop),
np.arange(0, len(source)),
source,
)
return np.nan_to_num(target)
def coarse_f0(self, f0):
"""Convert F0 to coarse F0."""
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel = np.clip(
(f0_mel - self.f0_mel_min)
* (self.f0_bin - 2)
/ (self.f0_mel_max - self.f0_mel_min)
+ 1,
1,
self.f0_bin - 1,
)
return np.rint(f0_mel).astype(int)
def process_file(self, file_info, f0_method, hop_length):
"""Process a single audio file for F0 extraction."""
inp_path, opt_path1, opt_path2, _ = file_info
if os.path.exists(opt_path1) and os.path.exists(opt_path2):
return
try:
np_arr = load_audio(inp_path, 16000)
feature_pit = self.compute_f0(np_arr, f0_method, hop_length)
np.save(opt_path2, feature_pit, allow_pickle=False)
coarse_pit = self.coarse_f0(feature_pit)
np.save(opt_path1, coarse_pit, allow_pickle=False)
except Exception as error:
print(
f"An error occurred extracting file {inp_path} on {self.device}: {error}"
)
def process_files(
self, files, f0_method, hop_length, device_num, device, n_threads
):
"""Process multiple files."""
self.device = device
if f0_method == "rmvpe":
self.model_rmvpe = RMVPE0Predictor(
os.path.join("rvc", "models", "predictors", "rmvpe.pt"),
is_half=False,
device=device,
)
else:
n_threads = 1
n_threads = 1 if n_threads == 0 else n_threads
def process_file_wrapper(file_info):
self.process_file(file_info, f0_method, hop_length)
with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar:
# using multi-threading
with concurrent.futures.ThreadPoolExecutor(
max_workers=n_threads
) as executor:
futures = [
executor.submit(process_file_wrapper, file_info)
for file_info in files
]
for future in concurrent.futures.as_completed(futures):
pbar.update(1)
def run_pitch_extraction(files, devices, f0_method, hop_length, num_processes):
devices_str = ", ".join(devices)
print(
f"Starting pitch extraction with {num_processes} cores on {devices_str} using {f0_method}..."
)
start_time = time.time()
fe = FeatureInput()
# split the task between devices
ps = []
num_devices = len(devices)
for i, device in enumerate(devices):
p = mp.Process(
target=fe.process_files,
args=(
files[i::num_devices],
f0_method,
hop_length,
i,
device,
num_processes // num_devices,
),
)
ps.append(p)
p.start()
for i, device in enumerate(devices):
ps[i].join()
elapsed_time = time.time() - start_time
print(f"Pitch extraction completed in {elapsed_time:.2f} seconds.")
def process_file_embedding(
files, version, embedder_model, embedder_model_custom, device_num, device, n_threads
):
dtype = torch.float16 if config.is_half and "cuda" in device else torch.float32
model = load_embedding(embedder_model, embedder_model_custom).to(dtype).to(device)
n_threads = 1 if n_threads == 0 else n_threads
def process_file_embedding_wrapper(file_info):
wav_file_path, _, _, out_file_path = file_info
if os.path.exists(out_file_path):
return
feats = torch.from_numpy(load_audio(wav_file_path, 16000)).to(dtype).to(device)
feats = feats.view(1, -1)
with torch.no_grad():
feats = model(feats)["last_hidden_state"]
feats = (
model.final_proj(feats[0]).unsqueeze(0) if version == "v1" else feats
)
feats = feats.squeeze(0).float().cpu().numpy()
if not np.isnan(feats).any():
np.save(out_file_path, feats, allow_pickle=False)
else:
print(f"{file} contains NaN values and will be skipped.")
with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar:
# using multi-threading
with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as executor:
futures = [
executor.submit(process_file_embedding_wrapper, file_info)
for file_info in files
]
for future in concurrent.futures.as_completed(futures):
pbar.update(1)
def run_embedding_extraction(
files, devices, version, embedder_model, embedder_model_custom
):
start_time = time.time()
devices_str = ", ".join(devices)
print(
f"Starting embedding extraction with {num_processes} cores on {devices_str}..."
)
# split the task between devices
ps = []
num_devices = len(devices)
for i, device in enumerate(devices):
p = mp.Process(
target=process_file_embedding,
args=(
files[i::num_devices],
version,
embedder_model,
embedder_model_custom,
i,
device,
num_processes // num_devices,
),
)
ps.append(p)
p.start()
for i, device in enumerate(devices):
ps[i].join()
elapsed_time = time.time() - start_time
print(f"Embedding extraction completed in {elapsed_time:.2f} seconds.")
if __name__ == "__main__":
exp_dir = sys.argv[1]
f0_method = sys.argv[2]
hop_length = int(sys.argv[3])
num_processes = int(sys.argv[4])
gpus = sys.argv[5]
version = sys.argv[6]
sample_rate = sys.argv[7]
embedder_model = sys.argv[8]
embedder_model_custom = sys.argv[9] if len(sys.argv) > 10 else None
# prep
wav_path = os.path.join(exp_dir, "sliced_audios_16k")
os.makedirs(os.path.join(exp_dir, "f0"), exist_ok=True)
os.makedirs(os.path.join(exp_dir, "f0_voiced"), exist_ok=True)
os.makedirs(os.path.join(exp_dir, version + "_extracted"), exist_ok=True)
# write to model_info.json
chosen_embedder_model = (
embedder_model_custom if embedder_model == "custom" else embedder_model
)
file_path = os.path.join(exp_dir, "model_info.json")
if os.path.exists(file_path):
with open(file_path, "r") as f:
data = json.load(f)
else:
data = {}
data.update(
{
"embedder_model": chosen_embedder_model,
}
)
with open(file_path, "w") as f:
json.dump(data, f, indent=4)
files = []
for file in glob.glob(os.path.join(wav_path, "*.wav")):
file_name = os.path.basename(file)
file_info = [
file, # full path to sliced 16k wav
os.path.join(exp_dir, "f0", file_name + ".npy"),
os.path.join(exp_dir, "f0_voiced", file_name + ".npy"),
os.path.join(
exp_dir, version + "_extracted", file_name.replace("wav", "npy")
),
]
files.append(file_info)
devices = ["cpu"] if gpus == "-" else [f"cuda:{idx}" for idx in gpus.split("-")]
# Run Pitch Extraction
run_pitch_extraction(files, devices, f0_method, hop_length, num_processes)
# Run Embedding Extraction
run_embedding_extraction(
files, devices, version, embedder_model, embedder_model_custom
)
# Run Preparing Files
generate_config(version, sample_rate, exp_dir)
generate_filelist(exp_dir, version, sample_rate)
|