File size: 33,812 Bytes
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378843
a8c39f5
 
 
 
 
 
 
 
 
1378843
a8c39f5
 
 
 
 
1378843
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378843
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378843
a8c39f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
import os
import re
import sys
import glob
import json
import torch
import datetime

from distutils.util import strtobool
from random import randint, shuffle
from time import time as ttime
from time import sleep
from tqdm import tqdm

from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import GradScaler, autocast
from torch.utils.data import DataLoader
from torch.nn import functional as F

import torch.distributed as dist
import torch.multiprocessing as mp

now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))

# Zluda hijack
import rvc.lib.zluda

from .utils import (
    HParams,
    plot_spectrogram_to_numpy,
    summarize,
    load_checkpoint,
    save_checkpoint,
    latest_checkpoint_path,
    load_wav_to_torch,
)

from .losses import (
    discriminator_loss,
    feature_loss,
    generator_loss,
    kl_loss,
)
from .mel_processing import mel_spectrogram_torch, spec_to_mel_torch

from rvc.train.process.extract_model import extract_model

from rvc.lib.algorithm import commons

# Parse command line arguments
model_name = sys.argv[1]
save_every_epoch = int(sys.argv[2])
total_epoch = int(sys.argv[3])
pretrainG = sys.argv[4]
pretrainD = sys.argv[5]
version = sys.argv[6]
batch_size = int(sys.argv[8])
sample_rate = int(sys.argv[9])
pitch_guidance = strtobool(sys.argv[10])
save_only_latest = strtobool(sys.argv[11])
save_every_weights = strtobool(sys.argv[12])
cache_data_in_gpu = strtobool(sys.argv[13])
overtraining_detector = strtobool(sys.argv[14])
overtraining_threshold = int(sys.argv[15])
cleanup = strtobool(sys.argv[16])

current_dir = os.getcwd()
experiment_dir = os.path.join(current_dir, "logs", model_name)
config_save_path = os.path.join(experiment_dir, "config.json")

with open(config_save_path, "r") as f:
    config = json.load(f)
config = HParams(**config)
config.data.training_files = os.path.join(experiment_dir, "filelist.txt")

torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False

global_step = 0
loss_gen_history = []
smoothed_loss_gen_history = []
loss_disc_history = []
smoothed_loss_disc_history = []
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
training_file_path = os.path.join(experiment_dir, "training_data.json")

import logging

logging.getLogger("torch").setLevel(logging.ERROR)


class EpochRecorder:
    """
    Records the time elapsed per epoch.
    """

    def __init__(self):
        self.last_time = ttime()

    def record(self):
        """
        Records the elapsed time and returns a formatted string.
        """
        now_time = ttime()
        elapsed_time = now_time - self.last_time
        self.last_time = now_time
        elapsed_time = round(elapsed_time, 1)
        elapsed_time_str = str(datetime.timedelta(seconds=int(elapsed_time)))
        current_time = datetime.datetime.now().strftime("%H:%M:%S")
        return f"time={current_time} | training_speed={elapsed_time_str}"


def verify_checkpoint_shapes(checkpoint_path, model):
    checkpoint = torch.load(checkpoint_path, map_location="cpu")
    checkpoint_state_dict = checkpoint["model"]
    try:
        if hasattr(model, "module"):
            model_state_dict = model.module.load_state_dict(checkpoint_state_dict)
        else:
            model_state_dict = model.load_state_dict(checkpoint_state_dict)
    except RuntimeError:
        print(
            "The parameters of the pretrain model such as the sample rate or architecture do not match the selected model."
        )
        sys.exit(1)
    else:
        del checkpoint
        del checkpoint_state_dict
        del model_state_dict


def main():
    """
    Main function to start the training process.
    """
    global training_file_path, smoothed_loss_gen_history, loss_gen_history, loss_disc_history, smoothed_loss_disc_history

    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = str(randint(20000, 55555))
    # Check sample rate
    wavs = glob.glob(
        os.path.join(os.path.join(experiment_dir, "sliced_audios"), "*.wav")
    )
    if wavs:
        _, sr = load_wav_to_torch(wavs[0])
        if sr != sample_rate:
            print(
                f"Error: Pretrained model sample rate ({sample_rate} Hz) does not match dataset audio sample rate ({sr} Hz)."
            )
            os._exit(1)
    else:
        print("No wav file found.")

    if torch.cuda.is_available():
        device = torch.device("cuda")
        n_gpus = torch.cuda.device_count()
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
        n_gpus = 1
    else:
        device = torch.device("cpu")
        n_gpus = 1
        print("Training with CPU, this will take a long time.")

    def start():
        """
        Starts the training process with multi-GPU support or CPU.
        """
        children = []
        pid_data = {"process_pids": []}
        with open(config_save_path, "r") as pid_file:
            try:
                existing_data = json.load(pid_file)
                pid_data.update(existing_data)
            except json.JSONDecodeError:
                pass
        with open(config_save_path, "w") as pid_file:
            for i in range(n_gpus):
                subproc = mp.Process(
                    target=run,
                    args=(
                        i,
                        n_gpus,
                        experiment_dir,
                        pretrainG,
                        pretrainD,
                        pitch_guidance,
                        total_epoch,
                        save_every_weights,
                        config,
                        device,
                    ),
                )
                children.append(subproc)
                subproc.start()
                pid_data["process_pids"].append(subproc.pid)
            json.dump(pid_data, pid_file, indent=4)

        for i in range(n_gpus):
            children[i].join()

    def load_from_json(file_path):
        """
        Load data from a JSON file.

        Args:
            file_path (str): The path to the JSON file.
        """
        if os.path.exists(file_path):
            with open(file_path, "r") as f:
                data = json.load(f)
                return (
                    data.get("loss_disc_history", []),
                    data.get("smoothed_loss_disc_history", []),
                    data.get("loss_gen_history", []),
                    data.get("smoothed_loss_gen_history", []),
                )
        return [], [], [], []

    def continue_overtrain_detector(training_file_path):
        """
        Continues the overtrain detector by loading the training history from a JSON file.

        Args:
            training_file_path (str): The file path of the JSON file containing the training history.
        """
        if overtraining_detector:
            if os.path.exists(training_file_path):
                (
                    loss_disc_history,
                    smoothed_loss_disc_history,
                    loss_gen_history,
                    smoothed_loss_gen_history,
                ) = load_from_json(training_file_path)

    if cleanup:
        print("Removing files from the prior training attempt...")

        # Clean up unnecessary files
        for root, dirs, files in os.walk(
            os.path.join(now_dir, "logs", model_name), topdown=False
        ):
            for name in files:
                file_path = os.path.join(root, name)
                file_name, file_extension = os.path.splitext(name)
                if (
                    file_extension == ".0"
                    or (file_name.startswith("D_") and file_extension == ".pth")
                    or (file_name.startswith("G_") and file_extension == ".pth")
                    or (file_name.startswith("added") and file_extension == ".index")
                ):
                    os.remove(file_path)
            for name in dirs:
                if name == "eval":
                    folder_path = os.path.join(root, name)
                    for item in os.listdir(folder_path):
                        item_path = os.path.join(folder_path, item)
                        if os.path.isfile(item_path):
                            os.remove(item_path)
                    os.rmdir(folder_path)

        print("Cleanup done!")

    continue_overtrain_detector(training_file_path)
    start()


def run(
    rank,
    n_gpus,
    experiment_dir,
    pretrainG,
    pretrainD,
    pitch_guidance,
    custom_total_epoch,
    custom_save_every_weights,
    config,
    device,
):
    """
    Runs the training loop on a specific GPU or CPU.

    Args:
        rank (int): The rank of the current process within the distributed training setup.
        n_gpus (int): The total number of GPUs available for training.
        experiment_dir (str): The directory where experiment logs and checkpoints will be saved.
        pretrainG (str): Path to the pre-trained generator model.
        pretrainD (str): Path to the pre-trained discriminator model.
        pitch_guidance (bool): Flag indicating whether to use pitch guidance during training.
        custom_total_epoch (int): The total number of epochs for training.
        custom_save_every_weights (int): The interval (in epochs) at which to save model weights.
        config (object): Configuration object containing training parameters.
        device (torch.device): The device to use for training (CPU or GPU).
    """
    global global_step, smoothed_value_gen, smoothed_value_disc

    smoothed_value_gen = 0
    smoothed_value_disc = 0

    if rank == 0:
        writer = SummaryWriter(log_dir=experiment_dir)
        writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval"))
    else:
        writer, writer_eval = None, None

    dist.init_process_group(
        backend="gloo",
        init_method="env://",
        world_size=n_gpus if device.type == "cuda" else 1,
        rank=rank if device.type == "cuda" else 0,
    )

    torch.manual_seed(config.train.seed)

    if torch.cuda.is_available():
        torch.cuda.set_device(rank)

    # Create datasets and dataloaders
    from .data_utils import (
        DistributedBucketSampler,
        TextAudioCollateMultiNSFsid,
        TextAudioLoaderMultiNSFsid,
    )

    train_dataset = TextAudioLoaderMultiNSFsid(config.data)
    collate_fn = TextAudioCollateMultiNSFsid()
    train_sampler = DistributedBucketSampler(
        train_dataset,
        batch_size * n_gpus,
        [100, 200, 300, 400, 500, 600, 700, 800, 900],
        num_replicas=n_gpus,
        rank=rank,
        shuffle=True,
    )

    train_loader = DataLoader(
        train_dataset,
        num_workers=4,
        shuffle=False,
        pin_memory=True,
        collate_fn=collate_fn,
        batch_sampler=train_sampler,
        persistent_workers=True,
        prefetch_factor=8,
    )

    # Initialize models and optimizers
    from rvc.lib.algorithm.discriminators import MultiPeriodDiscriminator
    from rvc.lib.algorithm.discriminators import MultiPeriodDiscriminatorV2
    from rvc.lib.algorithm.synthesizers import Synthesizer

    net_g = Synthesizer(
        config.data.filter_length // 2 + 1,
        config.train.segment_size // config.data.hop_length,
        **config.model,
        use_f0=pitch_guidance == True,  # converting 1/0 to True/False
        is_half=config.train.fp16_run and device.type == "cuda",
        sr=sample_rate,
    ).to(device)

    if version == "v1":
        net_d = MultiPeriodDiscriminator(config.model.use_spectral_norm).to(device)
    else:
        net_d = MultiPeriodDiscriminatorV2(config.model.use_spectral_norm).to(device)

    optim_g = torch.optim.AdamW(
        net_g.parameters(),
        config.train.learning_rate,
        betas=config.train.betas,
        eps=config.train.eps,
    )
    optim_d = torch.optim.AdamW(
        net_d.parameters(),
        config.train.learning_rate,
        betas=config.train.betas,
        eps=config.train.eps,
    )

    # Wrap models with DDP for multi-gpu processing
    if n_gpus > 1 and device.type == "cuda":
        net_g = DDP(net_g, device_ids=[rank])
        net_d = DDP(net_d, device_ids=[rank])

    # Load checkpoint if available
    try:
        print("Starting training...")
        _, _, _, epoch_str = load_checkpoint(
            latest_checkpoint_path(experiment_dir, "D_*.pth"), net_d, optim_d
        )
        _, _, _, epoch_str = load_checkpoint(
            latest_checkpoint_path(experiment_dir, "G_*.pth"), net_g, optim_g
        )
        epoch_str += 1
        global_step = (epoch_str - 1) * len(train_loader)

    except:
        epoch_str = 1
        global_step = 0
        if pretrainG != "":
            if rank == 0:
                verify_checkpoint_shapes(pretrainG, net_g)
                print(f"Loaded pretrained (G) '{pretrainG}'")
            if hasattr(net_g, "module"):
                net_g.module.load_state_dict(
                    torch.load(pretrainG, map_location="cpu")["model"]
                )
            else:
                net_g.load_state_dict(
                    torch.load(pretrainG, map_location="cpu")["model"]
                )

        if pretrainD != "":
            if rank == 0:
                print(f"Loaded pretrained (D) '{pretrainD}'")
            if hasattr(net_d, "module"):
                net_d.module.load_state_dict(
                    torch.load(pretrainD, map_location="cpu")["model"]
                )
            else:
                net_d.load_state_dict(
                    torch.load(pretrainD, map_location="cpu")["model"]
                )

    # Initialize schedulers and scaler
    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
        optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2
    )
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
        optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2
    )

    scaler = GradScaler(enabled=config.train.fp16_run and device.type == "cuda")

    cache = []
    # get the first sample as reference for tensorboard evaluation
    # custom reference temporarily disabled
    if True == False and os.path.isfile(
        os.path.join("logs", "reference", f"ref{sample_rate}.wav")
    ):
        import numpy as np

        phone = np.load(
            os.path.join("logs", "reference", f"ref{sample_rate}_feats.npy")
        )
        # expanding x2 to match pitch size
        phone = np.repeat(phone, 2, axis=0)
        phone = torch.FloatTensor(phone).unsqueeze(0).to(device)
        phone_lengths = torch.LongTensor(phone.size(0)).to(device)
        pitch = np.load(os.path.join("logs", "reference", f"ref{sample_rate}_f0c.npy"))
        # removed last frame to match features
        pitch = torch.LongTensor(pitch[:-1]).unsqueeze(0).to(device)
        pitchf = np.load(os.path.join("logs", "reference", f"ref{sample_rate}_f0f.npy"))
        # removed last frame to match features
        pitchf = torch.FloatTensor(pitchf[:-1]).unsqueeze(0).to(device)
        sid = torch.LongTensor([0]).to(device)
        reference = (
            phone,
            phone_lengths,
            pitch if pitch_guidance else None,
            pitchf if pitch_guidance else None,
            sid,
        )
    else:
        for info in train_loader:
            phone, phone_lengths, pitch, pitchf, _, _, _, _, sid = info
            reference = (
                phone.to(device),
                phone_lengths.to(device),
                pitch.to(device) if pitch_guidance else None,
                pitchf.to(device) if pitch_guidance else None,
                sid.to(device),
            )
            break

    for epoch in range(epoch_str, total_epoch + 1):
        train_and_evaluate(
            rank,
            epoch,
            config,
            [net_g, net_d],
            [optim_g, optim_d],
            scaler,
            [train_loader, None],
            [writer, writer_eval],
            cache,
            custom_save_every_weights,
            custom_total_epoch,
            device,
            reference,
        )

        scheduler_g.step()
        scheduler_d.step()


def train_and_evaluate(
    rank,
    epoch,
    hps,
    nets,
    optims,
    scaler,
    loaders,
    writers,
    cache,
    custom_save_every_weights,
    custom_total_epoch,
    device,
    reference,
):
    """
    Trains and evaluates the model for one epoch.

    Args:
        rank (int): Rank of the current process.
        epoch (int): Current epoch number.
        hps (Namespace): Hyperparameters.
        nets (list): List of models [net_g, net_d].
        optims (list): List of optimizers [optim_g, optim_d].
        scaler (GradScaler): Gradient scaler for mixed precision training.
        loaders (list): List of dataloaders [train_loader, eval_loader].
        writers (list): List of TensorBoard writers [writer, writer_eval].
        cache (list): List to cache data in GPU memory.
        use_cpu (bool): Whether to use CPU for training.
    """
    global global_step, lowest_value, loss_disc, consecutive_increases_gen, consecutive_increases_disc, smoothed_value_gen, smoothed_value_disc

    if epoch == 1:
        lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
        consecutive_increases_gen = 0
        consecutive_increases_disc = 0

    net_g, net_d = nets
    optim_g, optim_d = optims
    train_loader = loaders[0] if loaders is not None else None
    if writers is not None:
        writer = writers[0]

    train_loader.batch_sampler.set_epoch(epoch)

    net_g.train()
    net_d.train()

    # Data caching
    if device.type == "cuda" and cache_data_in_gpu:
        data_iterator = cache
        if cache == []:
            for batch_idx, info in enumerate(train_loader):
                # phone, phone_lengths, pitch, pitchf, spec, spec_lengths, wave, wave_lengths, sid
                info = [tensor.cuda(rank, non_blocking=True) for tensor in info]
                cache.append((batch_idx, info))
        else:
            shuffle(cache)
    else:
        data_iterator = enumerate(train_loader)

    epoch_recorder = EpochRecorder()
    with tqdm(total=len(train_loader), leave=False) as pbar:
        for batch_idx, info in data_iterator:
            if device.type == "cuda" and not cache_data_in_gpu:
                info = [tensor.cuda(rank, non_blocking=True) for tensor in info]
            elif device.type != "cuda":
                info = [tensor.to(device) for tensor in info]
            # else iterator is going thru a cached list with a device already assigned

            (
                phone,
                phone_lengths,
                pitch,
                pitchf,
                spec,
                spec_lengths,
                wave,
                wave_lengths,
                sid,
            ) = info
            pitch = pitch if pitch_guidance else None
            pitchf = pitchf if pitch_guidance else None

            # Forward pass
            use_amp = config.train.fp16_run and device.type == "cuda"
            with autocast(enabled=use_amp):
                model_output = net_g(
                    phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid
                )
                y_hat, ids_slice, x_mask, z_mask, (z, z_p, m_p, logs_p, m_q, logs_q) = (
                    model_output
                )
                # used for tensorboard chart - all/mel
                mel = spec_to_mel_torch(
                    spec,
                    config.data.filter_length,
                    config.data.n_mel_channels,
                    config.data.sample_rate,
                    config.data.mel_fmin,
                    config.data.mel_fmax,
                )
                # used for tensorboard chart - slice/mel_org
                y_mel = commons.slice_segments(
                    mel,
                    ids_slice,
                    config.train.segment_size // config.data.hop_length,
                    dim=3,
                )
                # used for tensorboard chart - slice/mel_gen
                with autocast(enabled=False):
                    y_hat_mel = mel_spectrogram_torch(
                        y_hat.float().squeeze(1),
                        config.data.filter_length,
                        config.data.n_mel_channels,
                        config.data.sample_rate,
                        config.data.hop_length,
                        config.data.win_length,
                        config.data.mel_fmin,
                        config.data.mel_fmax,
                    )
                if use_amp:
                    y_hat_mel = y_hat_mel.half()
                # slice of the original waveform to match a generate slice
                wave = commons.slice_segments(
                    wave,
                    ids_slice * config.data.hop_length,
                    config.train.segment_size,
                    dim=3,
                )
                y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
                with autocast(enabled=False):
                    loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
                        y_d_hat_r, y_d_hat_g
                    )
            # Discriminator backward and update
            optim_d.zero_grad()
            scaler.scale(loss_disc).backward()
            scaler.unscale_(optim_d)
            grad_norm_d = commons.clip_grad_value(net_d.parameters(), None)
            scaler.step(optim_d)

            # Generator backward and update
            with autocast(enabled=use_amp):
                y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
                with autocast(enabled=False):
                    loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel
                    loss_kl = (
                        kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl
                    )
                    loss_fm = feature_loss(fmap_r, fmap_g)
                    loss_gen, losses_gen = generator_loss(y_d_hat_g)
                    loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl

                    if loss_gen_all < lowest_value["value"]:
                        lowest_value["value"] = loss_gen_all
                        lowest_value["step"] = global_step
                        lowest_value["epoch"] = epoch
                        # print(f'Lowest generator loss updated: {lowest_value["value"]} at epoch {epoch}, step {global_step}')
                        if epoch > lowest_value["epoch"]:
                            print(
                                "Alert: The lower generating loss has been exceeded by a lower loss in a subsequent epoch."
                            )

            optim_g.zero_grad()
            scaler.scale(loss_gen_all).backward()
            scaler.unscale_(optim_g)
            grad_norm_g = commons.clip_grad_value(net_g.parameters(), None)
            scaler.step(optim_g)
            scaler.update()

            global_step += 1
            pbar.update(1)

    # Logging and checkpointing
    if rank == 0:
        lr = optim_g.param_groups[0]["lr"]
        if loss_mel > 75:
            loss_mel = 75
        if loss_kl > 9:
            loss_kl = 9
        scalar_dict = {
            "loss/g/total": loss_gen_all,
            "loss/d/total": loss_disc,
            "learning_rate": lr,
            "grad/norm_d": grad_norm_d,
            "grad/norm_g": grad_norm_g,
            "loss/g/fm": loss_fm,
            "loss/g/mel": loss_mel,
            "loss/g/kl": loss_kl,
        }
        # commented out
        # scalar_dict.update({f"loss/g/{i}": v for i, v in enumerate(losses_gen)})
        # scalar_dict.update({f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)})
        # scalar_dict.update({f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)})

        image_dict = {
            "slice/mel_org": plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
            "slice/mel_gen": plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
            "all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
        }

        with torch.no_grad():
            if hasattr(net_g, "module"):
                o, *_ = net_g.module.infer(*reference)
            else:
                o, *_ = net_g.infer(*reference)
        audio_dict = {f"gen/audio_{global_step:07d}": o[0, :, :]}

        summarize(
            writer=writer,
            global_step=global_step,
            images=image_dict,
            scalars=scalar_dict,
            audios=audio_dict,
            audio_sample_rate=config.data.sample_rate,
        )

    # Save checkpoint
    model_add = []
    model_del = []
    done = False

    if rank == 0:
        # Save weights every N epochs
        if epoch % save_every_epoch == 0:
            checkpoint_suffix = f"{2333333 if save_only_latest else global_step}.pth"
            save_checkpoint(
                net_g,
                optim_g,
                config.train.learning_rate,
                epoch,
                os.path.join(experiment_dir, "G_" + checkpoint_suffix),
            )
            save_checkpoint(
                net_d,
                optim_d,
                config.train.learning_rate,
                epoch,
                os.path.join(experiment_dir, "D_" + checkpoint_suffix),
            )
            if custom_save_every_weights:
                model_add.append(
                    os.path.join(
                        experiment_dir, f"{model_name}_{epoch}e_{global_step}s.pth"
                    )
                )
        overtrain_info = ""
        # Check overtraining
        if overtraining_detector and rank == 0 and epoch > 1:
            # Add the current loss to the history
            current_loss_disc = float(loss_disc)
            loss_disc_history.append(current_loss_disc)
            # Update smoothed loss history with loss_disc
            smoothed_value_disc = update_exponential_moving_average(
                smoothed_loss_disc_history, current_loss_disc
            )
            # Check overtraining with smoothed loss_disc
            is_overtraining_disc = check_overtraining(
                smoothed_loss_disc_history, overtraining_threshold * 2
            )
            if is_overtraining_disc:
                consecutive_increases_disc += 1
            else:
                consecutive_increases_disc = 0
            # Add the current loss_gen to the history
            current_loss_gen = float(lowest_value["value"])
            loss_gen_history.append(current_loss_gen)
            # Update the smoothed loss_gen history
            smoothed_value_gen = update_exponential_moving_average(
                smoothed_loss_gen_history, current_loss_gen
            )
            # Check for overtraining with the smoothed loss_gen
            is_overtraining_gen = check_overtraining(
                smoothed_loss_gen_history, overtraining_threshold, 0.01
            )
            if is_overtraining_gen:
                consecutive_increases_gen += 1
            else:
                consecutive_increases_gen = 0
            overtrain_info = f"Smoothed loss_g {smoothed_value_gen:.3f} and loss_d {smoothed_value_disc:.3f}"
            # Save the data in the JSON file if the epoch is divisible by save_every_epoch
            if epoch % save_every_epoch == 0:
                save_to_json(
                    training_file_path,
                    loss_disc_history,
                    smoothed_loss_disc_history,
                    loss_gen_history,
                    smoothed_loss_gen_history,
                )

            if (
                is_overtraining_gen
                and consecutive_increases_gen == overtraining_threshold
                or is_overtraining_disc
                and consecutive_increases_disc == overtraining_threshold * 2
            ):
                print(
                    f"Overtraining detected at epoch {epoch} with smoothed loss_g {smoothed_value_gen:.3f} and loss_d {smoothed_value_disc:.3f}"
                )
                done = True
            else:
                print(
                    f"New best epoch {epoch} with smoothed loss_g {smoothed_value_gen:.3f} and loss_d {smoothed_value_disc:.3f}"
                )
                old_model_files = glob.glob(
                    os.path.join(experiment_dir, f"{model_name}_*e_*s_best_epoch.pth")
                )
                for file in old_model_files:
                    model_del.append(file)
                model_add.append(
                    os.path.join(
                        experiment_dir,
                        f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth",
                    )
                )

        # Check completion
        if epoch >= custom_total_epoch:
            lowest_value_rounded = float(lowest_value["value"])
            lowest_value_rounded = round(lowest_value_rounded, 3)
            print(
                f"Training has been successfully completed with {epoch} epoch, {global_step} steps and {round(loss_gen_all.item(), 3)} loss gen."
            )
            print(
                f"Lowest generator loss: {lowest_value_rounded} at epoch {lowest_value['epoch']}, step {lowest_value['step']}"
            )

            pid_file_path = os.path.join(experiment_dir, "config.json")
            with open(pid_file_path, "r") as pid_file:
                pid_data = json.load(pid_file)
            with open(pid_file_path, "w") as pid_file:
                pid_data.pop("process_pids", None)
                json.dump(pid_data, pid_file, indent=4)
            # Final model
            model_add.append(
                os.path.join(
                    experiment_dir, f"{model_name}_{epoch}e_{global_step}s.pth"
                )
            )
            done = True

        if model_add:
            ckpt = (
                net_g.module.state_dict()
                if hasattr(net_g, "module")
                else net_g.state_dict()
            )
            for m in model_add:
                if not os.path.exists(m):
                    extract_model(
                        ckpt=ckpt,
                        sr=sample_rate,
                        pitch_guidance=pitch_guidance
                        == True,  # converting 1/0 to True/False,
                        name=model_name,
                        model_dir=m,
                        epoch=epoch,
                        step=global_step,
                        version=version,
                        hps=hps,
                        overtrain_info=overtrain_info,
                    )
        # Clean-up old best epochs
        for m in model_del:
            os.remove(m)

        # Print training progress
        lowest_value_rounded = float(lowest_value["value"])
        lowest_value_rounded = round(lowest_value_rounded, 3)

        record = f"{model_name} | epoch={epoch} | step={global_step} | {epoch_recorder.record()}"
        if epoch > 1:
            record = (
                record
                + f" | lowest_value={lowest_value_rounded} (epoch {lowest_value['epoch']} and step {lowest_value['step']})"
            )

        if overtraining_detector:
            remaining_epochs_gen = overtraining_threshold - consecutive_increases_gen
            remaining_epochs_disc = (
                overtraining_threshold * 2 - consecutive_increases_disc
            )
            record = (
                record
                + f" | Number of epochs remaining for overtraining: g/total: {remaining_epochs_gen} d/total: {remaining_epochs_disc} | smoothed_loss_gen={smoothed_value_gen:.3f} | smoothed_loss_disc={smoothed_value_disc:.3f}"
            )
        print(record)

        if done:
            os._exit(2333333)


def check_overtraining(smoothed_loss_history, threshold, epsilon=0.004):
    """
    Checks for overtraining based on the smoothed loss history.

    Args:
        smoothed_loss_history (list): List of smoothed losses for each epoch.
        threshold (int): Number of consecutive epochs with insignificant changes or increases to consider overtraining.
        epsilon (float): The maximum change considered insignificant.
    """
    if len(smoothed_loss_history) < threshold + 1:
        return False

    for i in range(-threshold, -1):
        if smoothed_loss_history[i + 1] > smoothed_loss_history[i]:
            return True
        if abs(smoothed_loss_history[i + 1] - smoothed_loss_history[i]) >= epsilon:
            return False
    return True


def update_exponential_moving_average(
    smoothed_loss_history, new_value, smoothing=0.987
):
    """
    Updates the exponential moving average with a new value.

    Args:
        smoothed_loss_history (list): List of smoothed values.
        new_value (float): New value to be added.
        smoothing (float): Smoothing factor.
    """
    if smoothed_loss_history:
        smoothed_value = (
            smoothing * smoothed_loss_history[-1] + (1 - smoothing) * new_value
        )
    else:
        smoothed_value = new_value
    smoothed_loss_history.append(smoothed_value)
    return smoothed_value


def save_to_json(
    file_path,
    loss_disc_history,
    smoothed_loss_disc_history,
    loss_gen_history,
    smoothed_loss_gen_history,
):
    """
    Save the training history to a JSON file.
    """
    data = {
        "loss_disc_history": loss_disc_history,
        "smoothed_loss_disc_history": smoothed_loss_disc_history,
        "loss_gen_history": loss_gen_history,
        "smoothed_loss_gen_history": smoothed_loss_gen_history,
    }
    with open(file_path, "w") as f:
        json.dump(data, f)