jlopez00's picture
Upload folder using huggingface_hub
1c6f49f verified
raw
history blame
4.29 kB
import asyncio
import json
import logging
import math
import os
import time
from functools import lru_cache
import edge_tts
import gradio as gr
import httpx
import soundfile as sf
from tts_service.utils import cache_path, env_str
from tts_service.voices import voice_manager
log = logging.getLogger(__name__)
@lru_cache(maxsize=None)
def import_voice_converter():
from rvc.infer.infer import VoiceConverter
return VoiceConverter()
# TTS
async def run_tts_script(
text: str,
voice_name: str,
rate: int = 0,
progress=gr.Progress(), # noqa: B008
) -> tuple[str, str]:
def update_progress(pct, msg) -> None:
log.debug("Progress: %.1f%%: %s", pct * 100, msg)
progress(pct, msg)
log.info("Synthesizing text (%s chars)", len(text))
update_progress(0, "Starting...")
voice = voice_manager.voices[voice_name]
text = text.strip()
output_tts_path = cache_path(voice.tts, "", rate, text, extension="mp3")
text_ptr = 0
if not os.path.exists(output_tts_path):
rates = f"+{rate}%" if rate >= 0 else f"{rate}%"
communicate = edge_tts.Communicate(text, voice.tts, rate=rates)
with open(output_tts_path, "wb") as f:
async for chunk in communicate.stream():
chunk_type = chunk["type"]
if chunk_type == "audio":
f.write(chunk["data"])
elif chunk_type == "WordBoundary":
chunk_text = chunk["text"]
text_index = text.index(chunk_text, text_ptr)
if text_index == -1:
log.warning("Extraneous text received from edge tts: %s", chunk_text)
continue
text_ptr = text_index + len(chunk_text)
pct_complete = text_ptr / len(text)
log.debug("%.1f%%: %s", pct_complete * 100, chunk)
update_progress(pct_complete / 2, "Synthesizing...")
else:
log.warning("Unknown chunk type: %s: %s", chunk_type, json.dumps(chunk))
audio_duration = sf.info(output_tts_path).duration
expected_processing_time = audio_duration / 8 + 10 # 10x real-time on nvidia t4
log.info(f"Synthesized {audio_duration:,.0f}s, expected processing time: {expected_processing_time:,.0f}s")
output_rvc_path = cache_path(voice.tts, voice.name, rate, text, extension="mp3")
if not os.path.exists(output_rvc_path):
ts0 = time.time()
last_check = 0.0
timeout = httpx.Timeout(5, read=15.0)
endpoint_url = env_str("RVC_ENDPOINT")
async with httpx.AsyncClient(timeout=timeout) as client:
response = await client.post(f"{endpoint_url}/v1/rvc", content=output_tts_path.read_bytes())
response.raise_for_status()
data = response.json()
log.info("Submitted for conversion: %s", data)
result_url = data["urls"]["result"]
while True:
elapsed = time.time() - ts0
proportion = elapsed / expected_processing_time
pct_complete = 0.5 + math.tanh(proportion) / 2
update_progress(pct_complete, "Processing...")
if elapsed > 0.8 * expected_processing_time and elapsed - last_check > 10:
last_check = elapsed
response = await client.get(result_url)
content_type = response.headers.get("Content-Type")
processed_bytes = await response.aread()
log.info(f"Checking status: %s (%s) {len(processed_bytes):,} bytes", response.status_code, content_type)
if response.status_code == 200 and content_type == "audio/mpeg":
output_rvc_path.write_bytes(processed_bytes)
break
elif response.status_code != 404:
response.raise_for_status()
await asyncio.sleep(0.1)
log.info("Successfully converted text (%s chars) -> %s", len(text), output_rvc_path)
else:
log.info("Already converted: %s", output_rvc_path)
return f"{audio_duration:,.0f}s of audio successfully synthesized.", str(output_rvc_path)
# Prerequisites