tts-service / rvc /train /mel_processing.py
jlopez00's picture
Upload folder using huggingface_hub
1378843 verified
raw
history blame
3.78 kB
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
"""
Dynamic range compression using log10.
Args:
x (torch.Tensor): Input tensor.
C (float, optional): Scaling factor. Defaults to 1.
clip_val (float, optional): Minimum value for clamping. Defaults to 1e-5.
"""
return torch.log(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes):
"""
Spectral normalization using dynamic range compression.
Args:
magnitudes (torch.Tensor): Magnitude spectrogram.
"""
return dynamic_range_compression_torch(magnitudes)
mel_basis = {}
hann_window = {}
def spectrogram_torch(y, n_fft, hop_size, win_size, center=False):
"""
Compute the spectrogram of a signal using STFT.
Args:
y (torch.Tensor): Input signal.
n_fft (int): FFT window size.
hop_size (int): Hop size between frames.
win_size (int): Window size.
center (bool, optional): Whether to center the window. Defaults to False.
"""
global hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
wnsize_dtype_device = str(win_size) + "_" + dtype_device
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
dtype=y.dtype, device=y.device
)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[wnsize_dtype_device],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6)
return spec
def spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax):
"""
Convert a spectrogram to a mel-spectrogram.
Args:
spec (torch.Tensor): Magnitude spectrogram.
n_fft (int): FFT window size.
num_mels (int): Number of mel frequency bins.
sample_rate (int): Sampling rate of the audio signal.
fmin (float): Minimum frequency.
fmax (float): Maximum frequency.
"""
global mel_basis
dtype_device = str(spec.dtype) + "_" + str(spec.device)
fmax_dtype_device = str(fmax) + "_" + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(
sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
dtype=spec.dtype, device=spec.device
)
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
melspec = spectral_normalize_torch(melspec)
return melspec
def mel_spectrogram_torch(
y, n_fft, num_mels, sample_rate, hop_size, win_size, fmin, fmax, center=False
):
"""
Compute the mel-spectrogram of a signal.
Args:
y (torch.Tensor): Input signal.
n_fft (int): FFT window size.
num_mels (int): Number of mel frequency bins.
sample_rate (int): Sampling rate of the audio signal.
hop_size (int): Hop size between frames.
win_size (int): Window size.
fmin (float): Minimum frequency.
fmax (float): Maximum frequency.
center (bool, optional): Whether to center the window. Defaults to False.
"""
spec = spectrogram_torch(y, n_fft, hop_size, win_size, center)
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax)
return melspec