tts-service / rvc /lib /algorithm /synthesizers.py
Jesus Lopez
feat: applio
a8c39f5
raw
history blame
9.05 kB
import torch
from typing import Optional
from rvc.lib.algorithm.nsf import GeneratorNSF
from rvc.lib.algorithm.generators import Generator
from rvc.lib.algorithm.commons import slice_segments, rand_slice_segments
from rvc.lib.algorithm.residuals import ResidualCouplingBlock
from rvc.lib.algorithm.encoders import TextEncoder, PosteriorEncoder
class Synthesizer(torch.nn.Module):
"""
Base Synthesizer model.
Args:
spec_channels (int): Number of channels in the spectrogram.
segment_size (int): Size of the audio segment.
inter_channels (int): Number of channels in the intermediate layers.
hidden_channels (int): Number of channels in the hidden layers.
filter_channels (int): Number of channels in the filter layers.
n_heads (int): Number of attention heads.
n_layers (int): Number of layers in the encoder.
kernel_size (int): Size of the convolution kernel.
p_dropout (float): Dropout probability.
resblock (str): Type of residual block.
resblock_kernel_sizes (list): Kernel sizes for the residual blocks.
resblock_dilation_sizes (list): Dilation sizes for the residual blocks.
upsample_rates (list): Upsampling rates for the decoder.
upsample_initial_channel (int): Number of channels in the initial upsampling layer.
upsample_kernel_sizes (list): Kernel sizes for the upsampling layers.
spk_embed_dim (int): Dimension of the speaker embedding.
gin_channels (int): Number of channels in the global conditioning vector.
sr (int): Sampling rate of the audio.
use_f0 (bool): Whether to use F0 information.
text_enc_hidden_dim (int): Hidden dimension for the text encoder.
kwargs: Additional keyword arguments.
"""
def __init__(
self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
spk_embed_dim,
gin_channels,
sr,
use_f0,
text_enc_hidden_dim=768,
**kwargs
):
super(Synthesizer, self).__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = float(p_dropout)
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.gin_channels = gin_channels
self.spk_embed_dim = spk_embed_dim
self.use_f0 = use_f0
self.enc_p = TextEncoder(
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
float(p_dropout),
text_enc_hidden_dim,
f0=use_f0,
)
if use_f0:
self.dec = GeneratorNSF(
inter_channels,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=gin_channels,
sr=sr,
is_half=kwargs["is_half"],
)
else:
self.dec = Generator(
inter_channels,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=gin_channels,
)
self.enc_q = PosteriorEncoder(
spec_channels,
inter_channels,
hidden_channels,
5,
1,
16,
gin_channels=gin_channels,
)
self.flow = ResidualCouplingBlock(
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = torch.nn.Embedding(self.spk_embed_dim, gin_channels)
def remove_weight_norm(self):
"""Removes weight normalization from the model."""
self.dec.remove_weight_norm()
self.flow.remove_weight_norm()
self.enc_q.remove_weight_norm()
def __prepare_scriptable__(self):
for hook in self.dec._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(self.dec)
for hook in self.flow._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(self.flow)
if hasattr(self, "enc_q"):
for hook in self.enc_q._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(self.enc_q)
return self
@torch.jit.ignore
def forward(
self,
phone: torch.Tensor,
phone_lengths: torch.Tensor,
pitch: Optional[torch.Tensor] = None,
pitchf: Optional[torch.Tensor] = None,
y: torch.Tensor = None,
y_lengths: torch.Tensor = None,
ds: Optional[torch.Tensor] = None,
):
"""
Forward pass of the model.
Args:
phone (torch.Tensor): Phoneme sequence.
phone_lengths (torch.Tensor): Lengths of the phoneme sequences.
pitch (torch.Tensor, optional): Pitch sequence.
pitchf (torch.Tensor, optional): Fine-grained pitch sequence.
y (torch.Tensor, optional): Target spectrogram.
y_lengths (torch.Tensor, optional): Lengths of the target spectrograms.
ds (torch.Tensor, optional): Speaker embedding. Defaults to None.
"""
g = self.emb_g(ds).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
if y is not None:
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
z_p = self.flow(z, y_mask, g=g)
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
if self.use_f0:
pitchf = slice_segments(pitchf, ids_slice, self.segment_size, 2)
o = self.dec(z_slice, pitchf, g=g)
else:
o = self.dec(z_slice, g=g)
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
else:
return None, None, x_mask, None, (None, None, m_p, logs_p, None, None)
@torch.jit.export
def infer(
self,
phone: torch.Tensor,
phone_lengths: torch.Tensor,
pitch: Optional[torch.Tensor] = None,
nsff0: Optional[torch.Tensor] = None,
sid: torch.Tensor = None,
rate: Optional[torch.Tensor] = None,
):
"""
Inference of the model.
Args:
phone (torch.Tensor): Phoneme sequence.
phone_lengths (torch.Tensor): Lengths of the phoneme sequences.
pitch (torch.Tensor, optional): Pitch sequence.
nsff0 (torch.Tensor, optional): Fine-grained pitch sequence.
sid (torch.Tensor): Speaker embedding.
rate (torch.Tensor, optional): Rate for time-stretching. Defaults to None.
"""
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
if rate is not None:
assert isinstance(rate, torch.Tensor)
head = int(z_p.shape[2] * (1.0 - rate.item()))
z_p = z_p[:, :, head:]
x_mask = x_mask[:, :, head:]
if self.use_f0:
nsff0 = nsff0[:, head:]
if self.use_f0:
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, nsff0, g=g)
else:
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, g=g)
return o, x_mask, (z, z_p, m_p, logs_p)