tts-service / rvc /train /process /extract_model.py
Jesus Lopez
feat: applio
a8c39f5
raw
history blame
4.06 kB
import os, sys
import torch
import hashlib
import datetime
from collections import OrderedDict
import json
now_dir = os.getcwd()
sys.path.append(now_dir)
def replace_keys_in_dict(d, old_key_part, new_key_part):
if isinstance(d, OrderedDict):
updated_dict = OrderedDict()
else:
updated_dict = {}
for key, value in d.items():
new_key = key.replace(old_key_part, new_key_part)
if isinstance(value, dict):
value = replace_keys_in_dict(value, old_key_part, new_key_part)
updated_dict[new_key] = value
return updated_dict
def extract_model(
ckpt,
sr,
pitch_guidance,
name,
model_dir,
epoch,
step,
version,
hps,
overtrain_info,
):
try:
print(f"Saved model '{model_dir}' (epoch {epoch} and step {step})")
model_dir_path = os.path.dirname(model_dir)
os.makedirs(model_dir_path, exist_ok=True)
if "best_epoch" in model_dir:
pth_file = f"{name}_{epoch}e_{step}s_best_epoch.pth"
else:
pth_file = f"{name}_{epoch}e_{step}s.pth"
pth_file_old_version_path = os.path.join(
model_dir_path, f"{pth_file}_old_version.pth"
)
model_dir_path = os.path.dirname(model_dir)
if os.path.exists(os.path.join(model_dir_path, "model_info.json")):
with open(os.path.join(model_dir_path, "model_info.json"), "r") as f:
data = json.load(f)
dataset_lenght = data.get("total_dataset_duration", None)
embedder_model = data.get("embedder_model", None)
speakers_id = data.get("speakers_id", 1)
else:
dataset_lenght = None
with open(os.path.join(now_dir, "assets", "config.json"), "r") as f:
data = json.load(f)
model_author = data.get("model_author", None)
opt = OrderedDict(
weight={
key: value.half() for key, value in ckpt.items() if "enc_q" not in key
}
)
opt["config"] = [
hps.data.filter_length // 2 + 1,
32,
hps.model.inter_channels,
hps.model.hidden_channels,
hps.model.filter_channels,
hps.model.n_heads,
hps.model.n_layers,
hps.model.kernel_size,
hps.model.p_dropout,
hps.model.resblock,
hps.model.resblock_kernel_sizes,
hps.model.resblock_dilation_sizes,
hps.model.upsample_rates,
hps.model.upsample_initial_channel,
hps.model.upsample_kernel_sizes,
hps.model.spk_embed_dim,
hps.model.gin_channels,
hps.data.sample_rate,
]
opt["epoch"] = epoch
opt["step"] = step
opt["sr"] = sr
opt["f0"] = pitch_guidance
opt["version"] = version
opt["creation_date"] = datetime.datetime.now().isoformat()
hash_input = f"{str(ckpt)} {epoch} {step} {datetime.datetime.now().isoformat()}"
model_hash = hashlib.sha256(hash_input.encode()).hexdigest()
opt["model_hash"] = model_hash
opt["overtrain_info"] = overtrain_info
opt["dataset_lenght"] = dataset_lenght
opt["model_name"] = name
opt["author"] = model_author
opt["embedder_model"] = embedder_model
opt["speakers_id"] = speakers_id
torch.save(opt, os.path.join(model_dir_path, pth_file))
model = torch.load(model_dir, map_location=torch.device("cpu"))
torch.save(
replace_keys_in_dict(
replace_keys_in_dict(
model, ".parametrizations.weight.original1", ".weight_v"
),
".parametrizations.weight.original0",
".weight_g",
),
pth_file_old_version_path,
)
os.remove(model_dir)
os.rename(pth_file_old_version_path, model_dir)
except Exception as error:
print(f"An error occurred extracting the model: {error}")