Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from collections import OrderedDict | |
def extract(ckpt): | |
a = ckpt["model"] | |
opt = OrderedDict() | |
opt["weight"] = {} | |
for key in a.keys(): | |
if "enc_q" in key: | |
continue | |
opt["weight"][key] = a[key] | |
return opt | |
def model_blender(name, path1, path2, ratio): | |
try: | |
message = f"Model {path1} and {path2} are merged with alpha {ratio}." | |
ckpt1 = torch.load(path1, map_location="cpu") | |
ckpt2 = torch.load(path2, map_location="cpu") | |
if ckpt1["sr"] != ckpt2["sr"]: | |
return "The sample rates of the two models are not the same." | |
cfg = ckpt1["config"] | |
cfg_f0 = ckpt1["f0"] | |
cfg_version = ckpt1["version"] | |
cfg_sr = ckpt1["sr"] | |
if "model" in ckpt1: | |
ckpt1 = extract(ckpt1) | |
else: | |
ckpt1 = ckpt1["weight"] | |
if "model" in ckpt2: | |
ckpt2 = extract(ckpt2) | |
else: | |
ckpt2 = ckpt2["weight"] | |
if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())): | |
return "Fail to merge the models. The model architectures are not the same." | |
opt = OrderedDict() | |
opt["weight"] = {} | |
for key in ckpt1.keys(): | |
if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape: | |
min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0]) | |
opt["weight"][key] = ( | |
ratio * (ckpt1[key][:min_shape0].float()) | |
+ (1 - ratio) * (ckpt2[key][:min_shape0].float()) | |
).half() | |
else: | |
opt["weight"][key] = ( | |
ratio * (ckpt1[key].float()) + (1 - ratio) * (ckpt2[key].float()) | |
).half() | |
opt["config"] = cfg | |
opt["sr"] = cfg_sr | |
opt["f0"] = cfg_f0 | |
opt["version"] = cfg_version | |
opt["info"] = message | |
torch.save(opt, os.path.join("logs", f"{name}.pth")) | |
print(message) | |
return message, os.path.join("logs", f"{name}.pth") | |
except Exception as error: | |
print(f"An error occurred blending the models: {error}") | |
return error | |