Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from typing import Optional | |
from rvc.lib.algorithm.commons import sequence_mask | |
from rvc.lib.algorithm.modules import WaveNet | |
from rvc.lib.algorithm.normalization import LayerNorm | |
from rvc.lib.algorithm.attentions import FFN, MultiHeadAttention | |
class Encoder(torch.nn.Module): | |
""" | |
Encoder module for the Transformer model. | |
Args: | |
hidden_channels (int): Number of hidden channels in the encoder. | |
filter_channels (int): Number of filter channels in the feed-forward network. | |
n_heads (int): Number of attention heads. | |
n_layers (int): Number of encoder layers. | |
kernel_size (int, optional): Kernel size of the convolution layers in the feed-forward network. Defaults to 1. | |
p_dropout (float, optional): Dropout probability. Defaults to 0.0. | |
window_size (int, optional): Window size for relative positional encoding. Defaults to 10. | |
""" | |
def __init__( | |
self, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size=1, | |
p_dropout=0.0, | |
window_size=10, | |
**kwargs | |
): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.window_size = window_size | |
self.drop = torch.nn.Dropout(p_dropout) | |
self.attn_layers = torch.nn.ModuleList() | |
self.norm_layers_1 = torch.nn.ModuleList() | |
self.ffn_layers = torch.nn.ModuleList() | |
self.norm_layers_2 = torch.nn.ModuleList() | |
for i in range(self.n_layers): | |
self.attn_layers.append( | |
MultiHeadAttention( | |
hidden_channels, | |
hidden_channels, | |
n_heads, | |
p_dropout=p_dropout, | |
window_size=window_size, | |
) | |
) | |
self.norm_layers_1.append(LayerNorm(hidden_channels)) | |
self.ffn_layers.append( | |
FFN( | |
hidden_channels, | |
hidden_channels, | |
filter_channels, | |
kernel_size, | |
p_dropout=p_dropout, | |
) | |
) | |
self.norm_layers_2.append(LayerNorm(hidden_channels)) | |
def forward(self, x, x_mask): | |
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | |
x = x * x_mask | |
for i in range(self.n_layers): | |
y = self.attn_layers[i](x, x, attn_mask) | |
y = self.drop(y) | |
x = self.norm_layers_1[i](x + y) | |
y = self.ffn_layers[i](x, x_mask) | |
y = self.drop(y) | |
x = self.norm_layers_2[i](x + y) | |
x = x * x_mask | |
return x | |
class TextEncoder(torch.nn.Module): | |
"""Text Encoder with configurable embedding dimension. | |
Args: | |
out_channels (int): Output channels of the encoder. | |
hidden_channels (int): Hidden channels of the encoder. | |
filter_channels (int): Filter channels of the encoder. | |
n_heads (int): Number of attention heads. | |
n_layers (int): Number of encoder layers. | |
kernel_size (int): Kernel size of the convolutional layers. | |
p_dropout (float): Dropout probability. | |
embedding_dim (int): Embedding dimension for phone embeddings (v1 = 256, v2 = 768). | |
f0 (bool, optional): Whether to use F0 embedding. Defaults to True. | |
""" | |
def __init__( | |
self, | |
out_channels, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
embedding_dim, | |
f0=True, | |
): | |
super(TextEncoder, self).__init__() | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = float(p_dropout) | |
self.emb_phone = torch.nn.Linear(embedding_dim, hidden_channels) | |
self.lrelu = torch.nn.LeakyReLU(0.1, inplace=True) | |
if f0: | |
self.emb_pitch = torch.nn.Embedding(256, hidden_channels) | |
self.encoder = Encoder( | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
float(p_dropout), | |
) | |
self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
def forward( | |
self, phone: torch.Tensor, pitch: Optional[torch.Tensor], lengths: torch.Tensor | |
): | |
if pitch is None: | |
x = self.emb_phone(phone) | |
else: | |
x = self.emb_phone(phone) + self.emb_pitch(pitch) | |
x = x * math.sqrt(self.hidden_channels) # [b, t, h] | |
x = self.lrelu(x) | |
x = torch.transpose(x, 1, -1) # [b, h, t] | |
x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype) | |
x = self.encoder(x * x_mask, x_mask) | |
stats = self.proj(x) * x_mask | |
m, logs = torch.split(stats, self.out_channels, dim=1) | |
return m, logs, x_mask | |
class PosteriorEncoder(torch.nn.Module): | |
"""Posterior Encoder for inferring latent representation. | |
Args: | |
in_channels (int): Number of channels in the input. | |
out_channels (int): Number of channels in the output. | |
hidden_channels (int): Number of hidden channels in the encoder. | |
kernel_size (int): Kernel size of the convolutional layers. | |
dilation_rate (int): Dilation rate of the convolutional layers. | |
n_layers (int): Number of layers in the encoder. | |
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=0, | |
): | |
super(PosteriorEncoder, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = gin_channels | |
self.pre = torch.nn.Conv1d(in_channels, hidden_channels, 1) | |
self.enc = WaveNet( | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=gin_channels, | |
) | |
self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
def forward( | |
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None | |
): | |
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | |
x = self.pre(x) * x_mask | |
x = self.enc(x, x_mask, g=g) | |
stats = self.proj(x) * x_mask | |
m, logs = torch.split(stats, self.out_channels, dim=1) | |
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | |
return z, m, logs, x_mask | |
def remove_weight_norm(self): | |
"""Removes weight normalization from the encoder.""" | |
self.enc.remove_weight_norm() | |
def __prepare_scriptable__(self): | |
"""Prepares the module for scripting.""" | |
for hook in self.enc._forward_pre_hooks.values(): | |
if ( | |
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" | |
and hook.__class__.__name__ == "WeightNorm" | |
): | |
torch.nn.utils.remove_weight_norm(self.enc) | |
return self | |