Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from torch.nn.utils import remove_weight_norm | |
from torch.nn.utils.parametrizations import weight_norm | |
from typing import Optional | |
from rvc.lib.algorithm.generators import SineGen | |
from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock1, ResBlock2 | |
from rvc.lib.algorithm.commons import init_weights | |
class SourceModuleHnNSF(torch.nn.Module): | |
""" | |
Source Module for harmonic-plus-noise excitation. | |
Args: | |
sample_rate (int): Sampling rate in Hz. | |
harmonic_num (int, optional): Number of harmonics above F0. Defaults to 0. | |
sine_amp (float, optional): Amplitude of sine source signal. Defaults to 0.1. | |
add_noise_std (float, optional): Standard deviation of additive Gaussian noise. Defaults to 0.003. | |
voiced_threshod (float, optional): Threshold to set voiced/unvoiced given F0. Defaults to 0. | |
is_half (bool, optional): Whether to use half precision. Defaults to True. | |
""" | |
def __init__( | |
self, | |
sample_rate, | |
harmonic_num=0, | |
sine_amp=0.1, | |
add_noise_std=0.003, | |
voiced_threshod=0, | |
is_half=True, | |
): | |
super(SourceModuleHnNSF, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = add_noise_std | |
self.is_half = is_half | |
self.l_sin_gen = SineGen( | |
sample_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod | |
) | |
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
self.l_tanh = torch.nn.Tanh() | |
def forward(self, x: torch.Tensor, upsample_factor: int = 1): | |
sine_wavs, uv, _ = self.l_sin_gen(x, upsample_factor) | |
sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype) | |
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
return sine_merge, None, None | |
class GeneratorNSF(torch.nn.Module): | |
""" | |
Generator for synthesizing audio using the NSF (Neural Source Filter) approach. | |
Args: | |
initial_channel (int): Number of channels in the initial convolutional layer. | |
resblock (str): Type of residual block to use (1 or 2). | |
resblock_kernel_sizes (list): Kernel sizes of the residual blocks. | |
resblock_dilation_sizes (list): Dilation rates of the residual blocks. | |
upsample_rates (list): Upsampling rates. | |
upsample_initial_channel (int): Number of channels in the initial upsampling layer. | |
upsample_kernel_sizes (list): Kernel sizes of the upsampling layers. | |
gin_channels (int): Number of channels for the global conditioning input. | |
sr (int): Sampling rate. | |
is_half (bool, optional): Whether to use half precision. Defaults to False. | |
""" | |
def __init__( | |
self, | |
initial_channel, | |
resblock, | |
resblock_kernel_sizes, | |
resblock_dilation_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
upsample_kernel_sizes, | |
gin_channels, | |
sr, | |
is_half=False, | |
): | |
super(GeneratorNSF, self).__init__() | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_rates) | |
self.m_source = SourceModuleHnNSF( | |
sample_rate=sr, harmonic_num=0, is_half=is_half | |
) | |
self.conv_pre = torch.nn.Conv1d( | |
initial_channel, upsample_initial_channel, 7, 1, padding=3 | |
) | |
resblock_cls = ResBlock1 if resblock == "1" else ResBlock2 | |
self.ups = torch.nn.ModuleList() | |
self.noise_convs = torch.nn.ModuleList() | |
channels = [ | |
upsample_initial_channel // (2 ** (i + 1)) | |
for i in range(len(upsample_rates)) | |
] | |
stride_f0s = [ | |
math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1 | |
for i in range(len(upsample_rates)) | |
] | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
self.ups.append( | |
weight_norm( | |
torch.nn.ConvTranspose1d( | |
upsample_initial_channel // (2**i), | |
channels[i], | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
self.noise_convs.append( | |
torch.nn.Conv1d( | |
1, | |
channels[i], | |
kernel_size=(stride_f0s[i] * 2 if stride_f0s[i] > 1 else 1), | |
stride=stride_f0s[i], | |
padding=(stride_f0s[i] // 2 if stride_f0s[i] > 1 else 0), | |
) | |
) | |
self.resblocks = torch.nn.ModuleList( | |
[ | |
resblock_cls(channels[i], k, d) | |
for i in range(len(self.ups)) | |
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes) | |
] | |
) | |
self.conv_post = torch.nn.Conv1d(channels[-1], 1, 7, 1, padding=3, bias=False) | |
self.ups.apply(init_weights) | |
if gin_channels != 0: | |
self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) | |
self.upp = math.prod(upsample_rates) | |
self.lrelu_slope = LRELU_SLOPE | |
def forward(self, x, f0, g: Optional[torch.Tensor] = None): | |
har_source, _, _ = self.m_source(f0, self.upp) | |
har_source = har_source.transpose(1, 2) | |
x = self.conv_pre(x) | |
if g is not None: | |
x = x + self.cond(g) | |
for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)): | |
x = torch.nn.functional.leaky_relu(x, self.lrelu_slope) | |
x = ups(x) | |
x = x + noise_convs(har_source) | |
xs = sum( | |
[ | |
resblock(x) | |
for j, resblock in enumerate(self.resblocks) | |
if j in range(i * self.num_kernels, (i + 1) * self.num_kernels) | |
] | |
) | |
x = xs / self.num_kernels | |
x = torch.nn.functional.leaky_relu(x) | |
x = torch.tanh(self.conv_post(x)) | |
return x | |
def remove_weight_norm(self): | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
def __prepare_scriptable__(self): | |
for l in self.ups: | |
for hook in l._forward_pre_hooks.values(): | |
if ( | |
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" | |
and hook.__class__.__name__ == "WeightNorm" | |
): | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
for hook in l._forward_pre_hooks.values(): | |
if ( | |
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" | |
and hook.__class__.__name__ == "WeightNorm" | |
): | |
remove_weight_norm(l) | |
return self | |