tts-service / rvc /infer /infer.py
jlopez00's picture
Upload folder using huggingface_hub
2c01ee6 verified
import logging
import os
import time
from typing import Callable, Coroutine
import librosa
import noisereduce as nr
import numpy as np
import soundfile as sf
import torch
from pedalboard import (
Pedalboard,
)
from pedalboard_native import (
Bitcrush,
Chorus,
Clipping,
Compressor,
Delay,
Distortion,
Gain,
Limiter,
PitchShift,
Reverb,
)
from rvc.configs.config import Config
from rvc.infer.pipeline import Pipeline as VC
from rvc.lib.algorithm.synthesizers import Synthesizer
from rvc.lib.tools.split_audio import merge_audio, process_audio
from rvc.lib.utils import load_audio_infer, load_embedding
log = logging.getLogger(__name__)
class VoiceConverter:
"""
A class for performing voice conversion using the Retrieval-Based Voice Conversion (RVC) method.
"""
def __init__(self):
"""
Initializes the VoiceConverter with default configuration, and sets up models and parameters.
"""
self.config = Config() # Load RVC configuration
self.hubert_model = None # Initialize the Hubert model (for embedding extraction)
self.last_embedder_model = None # Last used embedder model
self.tgt_sr = None # Target sampling rate for the output audio
self.net_g = None # Generator network for voice conversion
self.vc = None # Voice conversion pipeline instance
self.cpt = None # Checkpoint for loading model weights
self.version = None # Model version
self.use_f0 = None # Whether the model uses F0
self.loaded_model = None
def load_hubert(self, embedder_model: str, embedder_model_custom: str | None = None):
"""
Loads the HuBERT model for speaker embedding extraction.
Args:
embedder_model (str): Path to the pre-trained HuBERT model.
embedder_model_custom (str): Path to the custom HuBERT model.
"""
self.hubert_model = load_embedding(embedder_model, embedder_model_custom)
self.hubert_model.to(self.config.device)
self.hubert_model = self.hubert_model.half() if self.config.is_half else self.hubert_model.float()
self.hubert_model.eval()
@staticmethod
def remove_audio_noise(data, sr, reduction_strength=0.7):
"""
Removes noise from an audio file using the NoiseReduce library.
Args:
data (numpy.ndarray): The audio data as a NumPy array.
sr (int): The sample rate of the audio data.
reduction_strength (float): Strength of the noise reduction. Default is 0.7.
"""
try:
reduced_noise = nr.reduce_noise(y=data, sr=sr, prop_decrease=reduction_strength)
return reduced_noise
except Exception as error:
log.error("An error occurred removing audio noise", exc_info=error)
return None
@staticmethod
def convert_audio_format(input_path, output_path, output_format):
"""
Converts an audio file to a specified output format.
Args:
input_path (str): Path to the input audio file.
output_path (str): Path to the output audio file.
output_format (str): Desired audio format (e.g., "WAV", "MP3").
"""
try:
if output_format != "WAV":
log.info(f"Converting audio to {output_format} format...")
audio, sample_rate = librosa.load(input_path, sr=None)
common_sample_rates = [
8000,
11025,
12000,
16000,
22050,
24000,
32000,
44100,
48000,
]
target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate))
audio = librosa.resample(audio, orig_sr=sample_rate, target_sr=target_sr)
sf.write(output_path, audio, target_sr, format=output_format.lower())
return output_path
except Exception as error:
log.info("An error occurred converting the audio format", exc_info=error)
@staticmethod
def post_process_audio(
audio_input,
sample_rate,
**kwargs,
):
board = Pedalboard()
if kwargs.get("reverb", False):
reverb = Reverb(
room_size=kwargs.get("reverb_room_size", 0.5),
damping=kwargs.get("reverb_damping", 0.5),
wet_level=kwargs.get("reverb_wet_level", 0.33),
dry_level=kwargs.get("reverb_dry_level", 0.4),
width=kwargs.get("reverb_width", 1.0),
freeze_mode=kwargs.get("reverb_freeze_mode", 0),
)
board.append(reverb)
if kwargs.get("pitch_shift", False):
pitch_shift = PitchShift(semitones=kwargs.get("pitch_shift_semitones", 0))
board.append(pitch_shift)
if kwargs.get("limiter", False):
limiter = Limiter(
threshold_db=kwargs.get("limiter_threshold", -6),
release_ms=kwargs.get("limiter_release", 0.05),
)
board.append(limiter)
if kwargs.get("gain", False):
gain = Gain(gain_db=kwargs.get("gain_db", 0))
board.append(gain)
if kwargs.get("distortion", False):
distortion = Distortion(drive_db=kwargs.get("distortion_gain", 25))
board.append(distortion)
if kwargs.get("chorus", False):
chorus = Chorus(
rate_hz=kwargs.get("chorus_rate", 1.0),
depth=kwargs.get("chorus_depth", 0.25),
centre_delay_ms=kwargs.get("chorus_delay", 7),
feedback=kwargs.get("chorus_feedback", 0.0),
mix=kwargs.get("chorus_mix", 0.5),
)
board.append(chorus)
if kwargs.get("bitcrush", False):
bitcrush = Bitcrush(bit_depth=kwargs.get("bitcrush_bit_depth", 8))
board.append(bitcrush)
if kwargs.get("clipping", False):
clipping = Clipping(threshold_db=kwargs.get("clipping_threshold", 0))
board.append(clipping)
if kwargs.get("compressor", False):
compressor = Compressor(
threshold_db=kwargs.get("compressor_threshold", 0),
ratio=kwargs.get("compressor_ratio", 1),
attack_ms=kwargs.get("compressor_attack", 1.0),
release_ms=kwargs.get("compressor_release", 100),
)
board.append(compressor)
if kwargs.get("delay", False):
delay = Delay(
delay_seconds=kwargs.get("delay_seconds", 0.5),
feedback=kwargs.get("delay_feedback", 0.0),
mix=kwargs.get("delay_mix", 0.5),
)
board.append(delay)
return board(audio_input, sample_rate)
async def convert_audio(
self,
audio_input_path: str,
audio_output_path: str,
model_path: str,
index_path: str,
pitch: int = 0,
f0_file: str | None = None,
f0_method: str = "rmvpe",
index_rate: float = 0.75,
volume_envelope: float = 1,
protect: float = 0.5,
hop_length: int = 128,
split_audio: bool = False,
f0_autotune: bool = False,
f0_autotune_strength: float = 1,
filter_radius: int = 3,
embedder_model: str = "contentvec",
embedder_model_custom: str | None = None,
clean_audio: bool = False,
clean_strength: float = 0.5,
export_format: str = "WAV",
upscale_audio: bool = False,
post_process: bool = False,
resample_sr: int = 0,
sid: int = 0,
callback: Callable[[float], Coroutine[None, None, None]] | None = None,
**kwargs,
):
"""
Performs voice conversion on the input audio.
Args:
pitch (int): Key for F0 up-sampling.
filter_radius (int): Radius for filtering.
index_rate (float): Rate for index matching.
volume_envelope (int): RMS mix rate.
protect (float): Protection rate for certain audio segments.
hop_length (int): Hop length for audio processing.
f0_method (str): Method for F0 extraction.
audio_input_path (str): Path to the input audio file.
audio_output_path (str): Path to the output audio file.
model_path (str): Path to the voice conversion model.
index_path (str): Path to the index file.
split_audio (bool): Whether to split the audio for processing.
f0_autotune (bool): Whether to use F0 autotune.
clean_audio (bool): Whether to clean the audio.
clean_strength (float): Strength of the audio cleaning.
export_format (str): Format for exporting the audio.
upscale_audio (bool): Whether to upscale the audio.
f0_file (str): Path to the F0 file.
embedder_model (str): Path to the embedder model.
embedder_model_custom (str): Path to the custom embedder model.
resample_sr (int, optional): Resample sampling rate. Default is 0.
sid (int, optional): Speaker ID. Default is 0.
**kwargs: Additional keyword arguments.
"""
self.get_vc(model_path, sid)
try:
start_time = time.time()
log.info(f"Converting audio '{audio_input_path}'...")
# Step 1: Upscale to 48kHz using Predict() model. Currently disabled
if upscale_audio:
from audio_upscaler import upscale
upscale(audio_input_path, audio_input_path)
# Step 2: Load input audio file and downsample to 16kHz mono
audio = load_audio_infer(
audio_input_path,
16000,
**kwargs,
)
# Step 3: Normalize audio to 105%
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
# Step 4: Load hubert model
if not self.hubert_model or embedder_model != self.last_embedder_model:
self.load_hubert(embedder_model, embedder_model_custom)
self.last_embedder_model = embedder_model
file_index = index_path.strip().strip('"').strip("\n").strip('"').strip().replace("trained", "added")
if self.tgt_sr != resample_sr >= 16000:
self.tgt_sr = resample_sr
if split_audio:
chunks, intervals = process_audio(audio, 16000)
log.debug(f"Audio split into {len(chunks)} chunks for processing.")
else:
chunks = []
chunks.append(audio)
converted_chunks = []
for ix, c in enumerate(chunks):
if self.vc is None:
raise Exception("Voice conversion model not loaded.")
audio_opt = self.vc.pipeline(
model=self.hubert_model,
net_g=self.net_g,
sid=sid,
audio=c,
pitch=pitch,
f0_method=f0_method,
file_index=file_index,
index_rate=index_rate,
pitch_guidance=self.use_f0,
filter_radius=filter_radius,
volume_envelope=volume_envelope,
version=self.version,
protect=protect,
hop_length=hop_length,
f0_autotune=f0_autotune,
f0_autotune_strength=f0_autotune_strength,
f0_file=f0_file,
)
converted_chunks.append(audio_opt)
if split_audio:
log.debug(f"Converted audio chunk {len(converted_chunks)}")
if callback is not None:
await callback((ix + 1) / len(chunks))
audio_opt = merge_audio(converted_chunks, intervals, 16000, self.tgt_sr) if split_audio else converted_chunks[0]
if clean_audio:
cleaned_audio = self.remove_audio_noise(audio_opt, self.tgt_sr, clean_strength)
if cleaned_audio is not None:
audio_opt = cleaned_audio
if post_process:
audio_opt = self.post_process_audio(
audio_input=audio_opt,
sample_rate=self.tgt_sr,
**kwargs,
)
sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV")
output_path_format = audio_output_path.replace(".wav", f".{export_format.lower()}")
audio_output_path = self.convert_audio_format(audio_output_path, output_path_format, export_format)
elapsed_time = time.time() - start_time
log.info(f"Conversion completed at '{audio_output_path}' in {elapsed_time:.2f} seconds.")
except Exception as error:
log.error("An error occurred during audio conversion", exc_info=error)
def get_vc(self, weight_root, sid):
"""
Loads the voice conversion model and sets up the pipeline.
Args:
weight_root (str): Path to the model weights.
sid (int): Speaker ID.
"""
if sid == "" or sid == []:
self.cleanup_model()
if torch.cuda.is_available():
torch.cuda.empty_cache()
if not self.loaded_model or self.loaded_model != weight_root:
self.load_model(weight_root)
if self.cpt is not None:
self.setup_network()
self.setup_vc_instance()
self.loaded_model = weight_root
def cleanup_model(self):
"""
Cleans up the model and releases resources.
"""
if self.hubert_model is not None:
del self.net_g, self.vc, self.hubert_model, self.tgt_sr
self.hubert_model = self.net_g = self.vc = self.tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
del self.net_g, self.cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.cpt = None
def load_model(self, weight_root):
"""
Loads the model weights from the specified path.
Args:
weight_root (str): Path to the model weights.
"""
self.cpt = torch.load(weight_root, map_location="cpu") if os.path.isfile(weight_root) else None
def setup_network(self):
"""
Sets up the network configuration based on the loaded checkpoint.
"""
if self.cpt is not None:
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
self.use_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
self.text_enc_hidden_dim = 768 if self.version == "v2" else 256
self.net_g = Synthesizer(
*self.cpt["config"],
use_f0=self.use_f0,
text_enc_hidden_dim=self.text_enc_hidden_dim,
is_half=self.config.is_half,
)
del self.net_g.enc_q
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
self.net_g.eval().to(self.config.device)
self.net_g = self.net_g.half() if self.config.is_half else self.net_g.float()
def setup_vc_instance(self):
"""
Sets up the voice conversion pipeline instance based on the target sampling rate and configuration.
"""
if self.cpt is not None:
self.vc = VC(self.tgt_sr, self.config)