Spaces:
Runtime error
Runtime error
import torch | |
from datetime import datetime | |
def prettify_date(date_str): | |
if date_str is None: | |
return "None" | |
try: | |
date_time_obj = datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%S.%f") | |
return date_time_obj.strftime("%Y-%m-%d %H:%M:%S") | |
except ValueError: | |
return "Invalid date format" | |
def model_information(path): | |
model_data = torch.load(path, map_location="cpu") | |
print(f"Loaded model from {path}") | |
model_name = model_data.get("model_name", "None") | |
epochs = model_data.get("epoch", "None") | |
steps = model_data.get("step", "None") | |
sr = model_data.get("sr", "None") | |
f0 = model_data.get("f0", "None") | |
dataset_lenght = model_data.get("dataset_lenght", "None") | |
version = model_data.get("version", "None") | |
creation_date = model_data.get("creation_date", "None") | |
model_hash = model_data.get("model_hash", None) | |
overtrain_info = model_data.get("overtrain_info", "None") | |
model_author = model_data.get("author", "None") | |
embedder_model = model_data.get("embedder_model", "None") | |
speakers_id = model_data.get("speakers_id", 0) | |
pitch_guidance = "True" if f0 == 1 else "False" | |
creation_date_str = prettify_date(creation_date) if creation_date else "None" | |
return ( | |
f"Model Name: {model_name}\n" | |
f"Model Creator: {model_author}\n" | |
f"Epochs: {epochs}\n" | |
f"Steps: {steps}\n" | |
f"Model Architecture: {version}\n" | |
f"Sampling Rate: {sr}\n" | |
f"Pitch Guidance: {pitch_guidance}\n" | |
f"Dataset Length: {dataset_lenght}\n" | |
f"Creation Date: {creation_date_str}\n" | |
f"Hash (ID): {model_hash}\n" | |
f"Overtrain Info: {overtrain_info}" | |
f"Embedder Model: {embedder_model}" | |
f"Max Speakers ID: {speakers_id}" | |
) | |