Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- core/__init__.py +2 -9
- rvc/lib/tools/model_download.py +12 -169
- rvc/lib/utils.py +6 -17
- tabs/download/download.py +2 -237
- tabs/plugins/plugins_core.py +5 -6
- tts_service/app.py +2 -6
- tts_service/cli.py +2 -2
- tts_service/whitelist.py +6 -8
- web-root/index.html +17 -0
core/__init__.py
CHANGED
@@ -3,7 +3,6 @@ import subprocess
|
|
3 |
import sys
|
4 |
from functools import lru_cache
|
5 |
|
6 |
-
from rvc.lib.tools.model_download import model_download_pipeline
|
7 |
from rvc.lib.tools.prerequisites_download import prequisites_download_pipeline
|
8 |
from tts_service.utils import cache_path
|
9 |
from tts_service.voices import voice_manager
|
@@ -29,7 +28,7 @@ def run_tts_script(
|
|
29 |
voice = voice_manager.voices[voice_name]
|
30 |
format = "wav"
|
31 |
|
32 |
-
output_tts_path = cache_path(voice.tts, tts_text, extension=format)
|
33 |
if not os.path.exists(output_tts_path):
|
34 |
command_tts = [
|
35 |
*map(
|
@@ -47,7 +46,7 @@ def run_tts_script(
|
|
47 |
]
|
48 |
subprocess.run(command_tts)
|
49 |
|
50 |
-
output_rvc_path = cache_path(voice.tts, voice.name, tts_text, extension=format)
|
51 |
if not os.path.exists(output_rvc_path):
|
52 |
infer_pipeline = import_voice_converter()
|
53 |
infer_pipeline.convert_audio(
|
@@ -93,12 +92,6 @@ def run_tts_script(
|
|
93 |
return "Text synthesized successfully.", str(output_rvc_path)
|
94 |
|
95 |
|
96 |
-
# Download
|
97 |
-
def run_download_script(model_link: str):
|
98 |
-
model_download_pipeline(model_link)
|
99 |
-
return "Model downloaded successfully."
|
100 |
-
|
101 |
-
|
102 |
# Prerequisites
|
103 |
def run_prerequisites_script(
|
104 |
pretraineds_v1_f0: bool,
|
|
|
3 |
import sys
|
4 |
from functools import lru_cache
|
5 |
|
|
|
6 |
from rvc.lib.tools.prerequisites_download import prequisites_download_pipeline
|
7 |
from tts_service.utils import cache_path
|
8 |
from tts_service.voices import voice_manager
|
|
|
28 |
voice = voice_manager.voices[voice_name]
|
29 |
format = "wav"
|
30 |
|
31 |
+
output_tts_path = cache_path(voice.tts, "", tts_rate, tts_text, extension=format)
|
32 |
if not os.path.exists(output_tts_path):
|
33 |
command_tts = [
|
34 |
*map(
|
|
|
46 |
]
|
47 |
subprocess.run(command_tts)
|
48 |
|
49 |
+
output_rvc_path = cache_path(voice.tts, voice.name, tts_rate, tts_text, extension=format)
|
50 |
if not os.path.exists(output_rvc_path):
|
51 |
infer_pipeline = import_voice_converter()
|
52 |
infer_pipeline.convert_audio(
|
|
|
92 |
return "Text synthesized successfully.", str(output_rvc_path)
|
93 |
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
# Prerequisites
|
96 |
def run_prerequisites_script(
|
97 |
pretraineds_v1_f0: bool,
|
rvc/lib/tools/model_download.py
CHANGED
@@ -1,18 +1,16 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
-
import six
|
4 |
import sys
|
5 |
-
import
|
6 |
-
|
7 |
-
import zipfile
|
8 |
import requests
|
|
|
|
|
9 |
from bs4 import BeautifulSoup
|
10 |
-
from urllib.parse import unquote, urlencode, parse_qs, urlparse
|
11 |
|
12 |
now_dir = os.getcwd()
|
13 |
sys.path.append(now_dir)
|
14 |
|
15 |
-
from rvc.lib.utils import format_title
|
16 |
from rvc.lib.tools import gdown
|
17 |
|
18 |
|
@@ -27,21 +25,6 @@ file_path = find_folder_parent(now_dir, "logs")
|
|
27 |
zips_path = os.path.join(file_path, "zips")
|
28 |
|
29 |
|
30 |
-
def search_pth_index(folder):
|
31 |
-
pth_paths = [
|
32 |
-
os.path.join(folder, file)
|
33 |
-
for file in os.listdir(folder)
|
34 |
-
if os.path.isfile(os.path.join(folder, file)) and file.endswith(".pth")
|
35 |
-
]
|
36 |
-
index_paths = [
|
37 |
-
os.path.join(folder, file)
|
38 |
-
for file in os.listdir(folder)
|
39 |
-
if os.path.isfile(os.path.join(folder, file)) and file.endswith(".index")
|
40 |
-
]
|
41 |
-
|
42 |
-
return pth_paths, index_paths
|
43 |
-
|
44 |
-
|
45 |
def download_from_url(url):
|
46 |
os.makedirs(zips_path, exist_ok=True)
|
47 |
if url != "":
|
@@ -62,18 +45,11 @@ def download_from_url(url):
|
|
62 |
fuzzy=True,
|
63 |
)
|
64 |
except Exception as error:
|
65 |
-
error_message = str(
|
66 |
-
|
67 |
-
)
|
68 |
-
if (
|
69 |
-
"Too many users have viewed or downloaded this file recently"
|
70 |
-
in error_message
|
71 |
-
):
|
72 |
os.chdir(now_dir)
|
73 |
return "too much use"
|
74 |
-
elif
|
75 |
-
"Cannot retrieve the public link of the file." in error_message
|
76 |
-
):
|
77 |
os.chdir(now_dir)
|
78 |
return "private link"
|
79 |
else:
|
@@ -89,9 +65,7 @@ def download_from_url(url):
|
|
89 |
download_response = requests.get(download_url)
|
90 |
|
91 |
if download_response.status_code == 200:
|
92 |
-
filename = parse_qs(urlparse(unquote(download_url)).query).get(
|
93 |
-
"filename", [""]
|
94 |
-
)[0]
|
95 |
if filename:
|
96 |
os.chdir(zips_path)
|
97 |
with open(filename, "wb") as f:
|
@@ -107,11 +81,7 @@ def download_from_url(url):
|
|
107 |
print(file_id)
|
108 |
response = requests.get(f"https://pixeldrain.com/api/file/{file_id}")
|
109 |
if response.status_code == 200:
|
110 |
-
file_name = (
|
111 |
-
response.headers.get("Content-Disposition")
|
112 |
-
.split("filename=")[-1]
|
113 |
-
.strip('";')
|
114 |
-
)
|
115 |
os.makedirs(zips_path, exist_ok=True)
|
116 |
with open(os.path.join(zips_path, file_name), "wb") as newfile:
|
117 |
newfile.write(response.content)
|
@@ -141,9 +111,7 @@ def download_from_url(url):
|
|
141 |
|
142 |
response = requests.get(url, stream=True)
|
143 |
if response.status_code == 200:
|
144 |
-
content_disposition = six.moves.urllib_parse.unquote(
|
145 |
-
response.headers["Content-Disposition"]
|
146 |
-
)
|
147 |
m = re.search(r'filename="([^"]+)"', content_disposition)
|
148 |
file_name = m.groups()[0]
|
149 |
file_name = file_name.replace(os.path.sep, "_")
|
@@ -157,15 +125,8 @@ def download_from_url(url):
|
|
157 |
file.write(data)
|
158 |
progress += len(data)
|
159 |
progress_percent = int((progress / total_size_in_bytes) * 100)
|
160 |
-
num_dots = int(
|
161 |
-
|
162 |
-
)
|
163 |
-
progress_bar = (
|
164 |
-
"["
|
165 |
-
+ "." * num_dots
|
166 |
-
+ " " * (progress_bar_length - num_dots)
|
167 |
-
+ "]"
|
168 |
-
)
|
169 |
print(
|
170 |
f"{progress_percent}% {progress_bar} {progress}/{total_size_in_bytes} ",
|
171 |
end="\r",
|
@@ -243,121 +204,3 @@ def download_from_url(url):
|
|
243 |
|
244 |
os.chdir(now_dir)
|
245 |
return None
|
246 |
-
|
247 |
-
|
248 |
-
def extract_and_show_progress(zipfile_path, unzips_path):
|
249 |
-
try:
|
250 |
-
with zipfile.ZipFile(zipfile_path, "r") as zip_ref:
|
251 |
-
for file_info in zip_ref.infolist():
|
252 |
-
zip_ref.extract(file_info, unzips_path)
|
253 |
-
os.remove(zipfile_path)
|
254 |
-
return True
|
255 |
-
except Exception as error:
|
256 |
-
print(f"An error occurred extracting the zip file: {error}")
|
257 |
-
return False
|
258 |
-
|
259 |
-
|
260 |
-
def model_download_pipeline(url: str):
|
261 |
-
try:
|
262 |
-
verify = download_from_url(url)
|
263 |
-
if verify == "downloaded":
|
264 |
-
extract_folder_path = ""
|
265 |
-
for filename in os.listdir(zips_path):
|
266 |
-
if filename.endswith(".zip"):
|
267 |
-
zipfile_path = os.path.join(zips_path, filename)
|
268 |
-
print("Proceeding with the extraction...")
|
269 |
-
|
270 |
-
model_zip = os.path.basename(zipfile_path)
|
271 |
-
model_name = format_title(model_zip.split(".zip")[0])
|
272 |
-
extract_folder_path = os.path.join(
|
273 |
-
"logs",
|
274 |
-
os.path.normpath(model_name),
|
275 |
-
)
|
276 |
-
success = extract_and_show_progress(
|
277 |
-
zipfile_path, extract_folder_path
|
278 |
-
)
|
279 |
-
|
280 |
-
macosx_path = os.path.join(extract_folder_path, "__MACOSX")
|
281 |
-
if os.path.exists(macosx_path):
|
282 |
-
shutil.rmtree(macosx_path)
|
283 |
-
|
284 |
-
subfolders = [
|
285 |
-
f
|
286 |
-
for f in os.listdir(extract_folder_path)
|
287 |
-
if os.path.isdir(os.path.join(extract_folder_path, f))
|
288 |
-
]
|
289 |
-
if len(subfolders) == 1:
|
290 |
-
subfolder_path = os.path.join(
|
291 |
-
extract_folder_path, subfolders[0]
|
292 |
-
)
|
293 |
-
for item in os.listdir(subfolder_path):
|
294 |
-
s = os.path.join(subfolder_path, item)
|
295 |
-
d = os.path.join(extract_folder_path, item)
|
296 |
-
shutil.move(s, d)
|
297 |
-
os.rmdir(subfolder_path)
|
298 |
-
|
299 |
-
for item in os.listdir(extract_folder_path):
|
300 |
-
if ".pth" in item:
|
301 |
-
file_name = item.split(".pth")[0]
|
302 |
-
if file_name != model_name:
|
303 |
-
os.rename(
|
304 |
-
os.path.join(extract_folder_path, item),
|
305 |
-
os.path.join(
|
306 |
-
extract_folder_path, model_name + ".pth"
|
307 |
-
),
|
308 |
-
)
|
309 |
-
else:
|
310 |
-
if "v2" not in item:
|
311 |
-
if "_nprobe_1_" in item and "_v1" in item:
|
312 |
-
file_name = item.split("_nprobe_1_")[1].split(
|
313 |
-
"_v1"
|
314 |
-
)[0]
|
315 |
-
if file_name != model_name:
|
316 |
-
new_file_name = (
|
317 |
-
item.split("_nprobe_1_")[0]
|
318 |
-
+ "_nprobe_1_"
|
319 |
-
+ model_name
|
320 |
-
+ "_v1"
|
321 |
-
)
|
322 |
-
os.rename(
|
323 |
-
os.path.join(extract_folder_path, item),
|
324 |
-
os.path.join(
|
325 |
-
extract_folder_path,
|
326 |
-
new_file_name + ".index",
|
327 |
-
),
|
328 |
-
)
|
329 |
-
else:
|
330 |
-
if "_nprobe_1_" in item and "_v2" in item:
|
331 |
-
file_name = item.split("_nprobe_1_")[1].split(
|
332 |
-
"_v2"
|
333 |
-
)[0]
|
334 |
-
if file_name != model_name:
|
335 |
-
new_file_name = (
|
336 |
-
item.split("_nprobe_1_")[0]
|
337 |
-
+ "_nprobe_1_"
|
338 |
-
+ model_name
|
339 |
-
+ "_v2"
|
340 |
-
)
|
341 |
-
os.rename(
|
342 |
-
os.path.join(extract_folder_path, item),
|
343 |
-
os.path.join(
|
344 |
-
extract_folder_path,
|
345 |
-
new_file_name + ".index",
|
346 |
-
),
|
347 |
-
)
|
348 |
-
|
349 |
-
if success:
|
350 |
-
print(f"Model {model_name} downloaded!")
|
351 |
-
else:
|
352 |
-
print(f"Error downloading {model_name}")
|
353 |
-
return "Error"
|
354 |
-
if extract_folder_path == "":
|
355 |
-
print("Zip file was not found.")
|
356 |
-
return "Error"
|
357 |
-
result = search_pth_index(extract_folder_path)
|
358 |
-
return result
|
359 |
-
else:
|
360 |
-
return "Error"
|
361 |
-
except Exception as error:
|
362 |
-
print(f"An unexpected error occurred: {error}")
|
363 |
-
return "Error"
|
|
|
1 |
import os
|
2 |
import re
|
|
|
3 |
import sys
|
4 |
+
from urllib.parse import parse_qs, unquote, urlencode, urlparse
|
5 |
+
|
|
|
6 |
import requests
|
7 |
+
import six
|
8 |
+
import wget
|
9 |
from bs4 import BeautifulSoup
|
|
|
10 |
|
11 |
now_dir = os.getcwd()
|
12 |
sys.path.append(now_dir)
|
13 |
|
|
|
14 |
from rvc.lib.tools import gdown
|
15 |
|
16 |
|
|
|
25 |
zips_path = os.path.join(file_path, "zips")
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def download_from_url(url):
|
29 |
os.makedirs(zips_path, exist_ok=True)
|
30 |
if url != "":
|
|
|
45 |
fuzzy=True,
|
46 |
)
|
47 |
except Exception as error:
|
48 |
+
error_message = str(f"An error occurred downloading the file: {error}")
|
49 |
+
if "Too many users have viewed or downloaded this file recently" in error_message:
|
|
|
|
|
|
|
|
|
|
|
50 |
os.chdir(now_dir)
|
51 |
return "too much use"
|
52 |
+
elif "Cannot retrieve the public link of the file." in error_message:
|
|
|
|
|
53 |
os.chdir(now_dir)
|
54 |
return "private link"
|
55 |
else:
|
|
|
65 |
download_response = requests.get(download_url)
|
66 |
|
67 |
if download_response.status_code == 200:
|
68 |
+
filename = parse_qs(urlparse(unquote(download_url)).query).get("filename", [""])[0]
|
|
|
|
|
69 |
if filename:
|
70 |
os.chdir(zips_path)
|
71 |
with open(filename, "wb") as f:
|
|
|
81 |
print(file_id)
|
82 |
response = requests.get(f"https://pixeldrain.com/api/file/{file_id}")
|
83 |
if response.status_code == 200:
|
84 |
+
file_name = response.headers.get("Content-Disposition").split("filename=")[-1].strip('";')
|
|
|
|
|
|
|
|
|
85 |
os.makedirs(zips_path, exist_ok=True)
|
86 |
with open(os.path.join(zips_path, file_name), "wb") as newfile:
|
87 |
newfile.write(response.content)
|
|
|
111 |
|
112 |
response = requests.get(url, stream=True)
|
113 |
if response.status_code == 200:
|
114 |
+
content_disposition = six.moves.urllib_parse.unquote(response.headers["Content-Disposition"])
|
|
|
|
|
115 |
m = re.search(r'filename="([^"]+)"', content_disposition)
|
116 |
file_name = m.groups()[0]
|
117 |
file_name = file_name.replace(os.path.sep, "_")
|
|
|
125 |
file.write(data)
|
126 |
progress += len(data)
|
127 |
progress_percent = int((progress / total_size_in_bytes) * 100)
|
128 |
+
num_dots = int((progress / total_size_in_bytes) * progress_bar_length)
|
129 |
+
progress_bar = "[" + "." * num_dots + " " * (progress_bar_length - num_dots) + "]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
print(
|
131 |
f"{progress_percent}% {progress_bar} {progress}/{total_size_in_bytes} ",
|
132 |
end="\r",
|
|
|
204 |
|
205 |
os.chdir(now_dir)
|
206 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rvc/lib/utils.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
2 |
import librosa
|
3 |
-
import soundfile as sf
|
4 |
import numpy as np
|
5 |
-
import
|
6 |
-
import unicodedata
|
7 |
import wget
|
8 |
from torch import nn
|
9 |
-
|
10 |
-
import logging
|
11 |
from transformers import HubertModel
|
12 |
-
import warnings
|
13 |
|
14 |
# Remove this to see warnings about transformers models
|
15 |
warnings.filterwarnings("ignore")
|
@@ -65,16 +64,6 @@ def load_audio_infer(
|
|
65 |
return np.array(audio).flatten()
|
66 |
|
67 |
|
68 |
-
def format_title(title):
|
69 |
-
formatted_title = (
|
70 |
-
unicodedata.normalize("NFKD", title).encode("ascii", "ignore").decode("utf-8")
|
71 |
-
)
|
72 |
-
formatted_title = re.sub(r"[\u2500-\u257F]+", "", formatted_title)
|
73 |
-
formatted_title = re.sub(r"[^\w\s.-]", "", formatted_title)
|
74 |
-
formatted_title = re.sub(r"\s+", "_", formatted_title)
|
75 |
-
return formatted_title
|
76 |
-
|
77 |
-
|
78 |
def load_embedding(embedder_model, custom_embedder=None):
|
79 |
embedder_root = os.path.join(now_dir, "rvc", "models", "embedders")
|
80 |
embedding_list = {
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import warnings
|
5 |
+
|
6 |
import librosa
|
|
|
7 |
import numpy as np
|
8 |
+
import soundfile as sf
|
|
|
9 |
import wget
|
10 |
from torch import nn
|
|
|
|
|
11 |
from transformers import HubertModel
|
|
|
12 |
|
13 |
# Remove this to see warnings about transformers models
|
14 |
warnings.filterwarnings("ignore")
|
|
|
64 |
return np.array(audio).flatten()
|
65 |
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def load_embedding(embedder_model, custom_embedder=None):
|
68 |
embedder_root = os.path.join(now_dir, "rvc", "models", "embedders")
|
69 |
embedding_list = {
|
tabs/download/download.py
CHANGED
@@ -1,22 +1,13 @@
|
|
1 |
import os
|
2 |
-
import sys
|
3 |
-
import json
|
4 |
import shutil
|
5 |
-
import
|
6 |
import tempfile
|
7 |
-
import gradio as gr
|
8 |
-
import pandas as pd
|
9 |
-
|
10 |
-
from concurrent.futures import ThreadPoolExecutor
|
11 |
-
from tqdm import tqdm
|
12 |
|
|
|
13 |
|
14 |
now_dir = os.getcwd()
|
15 |
sys.path.append(now_dir)
|
16 |
|
17 |
-
from core import run_download_script
|
18 |
-
from rvc.lib.utils import format_title
|
19 |
-
|
20 |
from assets.i18n.i18n import I18nAuto
|
21 |
|
22 |
i18n = I18nAuto()
|
@@ -27,107 +18,6 @@ if os.path.exists(gradio_temp_dir):
|
|
27 |
shutil.rmtree(gradio_temp_dir)
|
28 |
|
29 |
|
30 |
-
def save_drop_model(dropbox):
|
31 |
-
if "pth" not in dropbox and "index" not in dropbox:
|
32 |
-
raise gr.Error(
|
33 |
-
message="The file you dropped is not a valid model file. Please try again."
|
34 |
-
)
|
35 |
-
else:
|
36 |
-
file_name = format_title(os.path.basename(dropbox))
|
37 |
-
if ".pth" in dropbox:
|
38 |
-
model_name = format_title(file_name.split(".pth")[0])
|
39 |
-
else:
|
40 |
-
if "v2" not in dropbox:
|
41 |
-
model_name = format_title(
|
42 |
-
file_name.split("_nprobe_1_")[1].split("_v1")[0]
|
43 |
-
)
|
44 |
-
else:
|
45 |
-
model_name = format_title(
|
46 |
-
file_name.split("_nprobe_1_")[1].split("_v2")[0]
|
47 |
-
)
|
48 |
-
model_path = os.path.join(now_dir, "logs", model_name)
|
49 |
-
if not os.path.exists(model_path):
|
50 |
-
os.makedirs(model_path)
|
51 |
-
if os.path.exists(os.path.join(model_path, file_name)):
|
52 |
-
os.remove(os.path.join(model_path, file_name))
|
53 |
-
shutil.move(dropbox, os.path.join(model_path, file_name))
|
54 |
-
print(f"{file_name} saved in {model_path}")
|
55 |
-
gr.Info(f"{file_name} saved in {model_path}")
|
56 |
-
return None
|
57 |
-
|
58 |
-
|
59 |
-
def search_models(name):
|
60 |
-
url = f"https://cjtfqzjfdimgpvpwhzlv.supabase.co/rest/v1/models?name=ilike.%25{name}%25&order=created_at.desc&limit=15"
|
61 |
-
headers = {
|
62 |
-
"apikey": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImNqdGZxempmZGltZ3B2cHdoemx2Iiwicm9sZSI6ImFub24iLCJpYXQiOjE3MjY5MjYxMzQsImV4cCI6MjA0MjUwMjEzNH0.OyDXlhvH6D-IsHiWhPAGUtsPGGUvWQynfxUeQwfYToE"
|
63 |
-
}
|
64 |
-
response = requests.get(url, headers=headers)
|
65 |
-
data = response.json()
|
66 |
-
if len(data) == 0:
|
67 |
-
gr.Info(i18n("We couldn't find models by that name."))
|
68 |
-
return None
|
69 |
-
else:
|
70 |
-
df = pd.DataFrame(data)[["name", "link", "epochs", "type"]]
|
71 |
-
df["link"] = df["link"].apply(
|
72 |
-
lambda x: f'<a href="{x}" target="_blank">{x}</a>'
|
73 |
-
)
|
74 |
-
return df
|
75 |
-
|
76 |
-
|
77 |
-
json_url = "https://huggingface.co/IAHispano/Applio/raw/main/pretrains.json"
|
78 |
-
|
79 |
-
|
80 |
-
def fetch_pretrained_data():
|
81 |
-
pretraineds_custom_path = os.path.join(
|
82 |
-
"rvc", "models", "pretraineds", "pretraineds_custom"
|
83 |
-
)
|
84 |
-
os.makedirs(pretraineds_custom_path, exist_ok=True)
|
85 |
-
try:
|
86 |
-
with open(
|
87 |
-
os.path.join(pretraineds_custom_path, json_url.split("/")[-1]), "r"
|
88 |
-
) as f:
|
89 |
-
data = json.load(f)
|
90 |
-
except:
|
91 |
-
try:
|
92 |
-
response = requests.get(json_url)
|
93 |
-
response.raise_for_status()
|
94 |
-
data = response.json()
|
95 |
-
with open(
|
96 |
-
os.path.join(pretraineds_custom_path, json_url.split("/")[-1]),
|
97 |
-
"w",
|
98 |
-
encoding="utf-8",
|
99 |
-
) as f:
|
100 |
-
json.dump(
|
101 |
-
data,
|
102 |
-
f,
|
103 |
-
indent=2,
|
104 |
-
separators=(",", ": "),
|
105 |
-
ensure_ascii=False,
|
106 |
-
)
|
107 |
-
except:
|
108 |
-
data = {
|
109 |
-
"Titan": {
|
110 |
-
"32k": {"D": "null", "G": "null"},
|
111 |
-
},
|
112 |
-
}
|
113 |
-
return data
|
114 |
-
|
115 |
-
|
116 |
-
def get_pretrained_list():
|
117 |
-
data = fetch_pretrained_data()
|
118 |
-
return list(data.keys())
|
119 |
-
|
120 |
-
|
121 |
-
def get_pretrained_sample_rates(model):
|
122 |
-
data = fetch_pretrained_data()
|
123 |
-
return list(data[model].keys())
|
124 |
-
|
125 |
-
|
126 |
-
def get_file_size(url):
|
127 |
-
response = requests.head(url)
|
128 |
-
return int(response.headers.get("content-length", 0))
|
129 |
-
|
130 |
-
|
131 |
def download_file(url, destination_path, progress_bar):
|
132 |
os.makedirs(os.path.dirname(destination_path), exist_ok=True)
|
133 |
response = requests.get(url, stream=True)
|
@@ -136,128 +26,3 @@ def download_file(url, destination_path, progress_bar):
|
|
136 |
for data in response.iter_content(block_size):
|
137 |
file.write(data)
|
138 |
progress_bar.update(len(data))
|
139 |
-
|
140 |
-
|
141 |
-
def download_pretrained_model(model, sample_rate):
|
142 |
-
data = fetch_pretrained_data()
|
143 |
-
paths = data[model][sample_rate]
|
144 |
-
pretraineds_custom_path = os.path.join(
|
145 |
-
"rvc", "models", "pretraineds", "pretraineds_custom"
|
146 |
-
)
|
147 |
-
os.makedirs(pretraineds_custom_path, exist_ok=True)
|
148 |
-
|
149 |
-
d_url = f"https://huggingface.co/{paths['D']}"
|
150 |
-
g_url = f"https://huggingface.co/{paths['G']}"
|
151 |
-
|
152 |
-
total_size = get_file_size(d_url) + get_file_size(g_url)
|
153 |
-
|
154 |
-
gr.Info("Downloading pretrained model...")
|
155 |
-
|
156 |
-
with tqdm(
|
157 |
-
total=total_size, unit="iB", unit_scale=True, desc="Downloading files"
|
158 |
-
) as progress_bar:
|
159 |
-
with ThreadPoolExecutor(max_workers=2) as executor:
|
160 |
-
futures = [
|
161 |
-
executor.submit(
|
162 |
-
download_file,
|
163 |
-
d_url,
|
164 |
-
os.path.join(pretraineds_custom_path, os.path.basename(paths["D"])),
|
165 |
-
progress_bar,
|
166 |
-
),
|
167 |
-
executor.submit(
|
168 |
-
download_file,
|
169 |
-
g_url,
|
170 |
-
os.path.join(pretraineds_custom_path, os.path.basename(paths["G"])),
|
171 |
-
progress_bar,
|
172 |
-
),
|
173 |
-
]
|
174 |
-
for future in futures:
|
175 |
-
future.result()
|
176 |
-
|
177 |
-
gr.Info("Pretrained model downloaded successfully!")
|
178 |
-
print("Pretrained model downloaded successfully!")
|
179 |
-
|
180 |
-
|
181 |
-
def update_sample_rate_dropdown(model):
|
182 |
-
return {
|
183 |
-
"choices": get_pretrained_sample_rates(model),
|
184 |
-
"value": get_pretrained_sample_rates(model)[0],
|
185 |
-
"__type__": "update",
|
186 |
-
}
|
187 |
-
|
188 |
-
|
189 |
-
def download_tab():
|
190 |
-
with gr.Column():
|
191 |
-
gr.Markdown(value=i18n("## Download Model"))
|
192 |
-
model_link = gr.Textbox(
|
193 |
-
label=i18n("Model Link"),
|
194 |
-
placeholder=i18n("Introduce the model link"),
|
195 |
-
interactive=True,
|
196 |
-
)
|
197 |
-
model_download_output_info = gr.Textbox(
|
198 |
-
label=i18n("Output Information"),
|
199 |
-
info=i18n("The output information will be displayed here."),
|
200 |
-
value="",
|
201 |
-
max_lines=8,
|
202 |
-
interactive=False,
|
203 |
-
)
|
204 |
-
model_download_button = gr.Button(i18n("Download Model"))
|
205 |
-
model_download_button.click(
|
206 |
-
fn=run_download_script,
|
207 |
-
inputs=[model_link],
|
208 |
-
outputs=[model_download_output_info],
|
209 |
-
)
|
210 |
-
gr.Markdown(value=i18n("## Drop files"))
|
211 |
-
dropbox = gr.File(
|
212 |
-
label=i18n(
|
213 |
-
"Drag your .pth file and .index file into this space. Drag one and then the other."
|
214 |
-
),
|
215 |
-
type="filepath",
|
216 |
-
)
|
217 |
-
|
218 |
-
dropbox.upload(
|
219 |
-
fn=save_drop_model,
|
220 |
-
inputs=[dropbox],
|
221 |
-
outputs=[dropbox],
|
222 |
-
)
|
223 |
-
gr.Markdown(value=i18n("## Search Model"))
|
224 |
-
search_name = gr.Textbox(
|
225 |
-
label=i18n("Model Name"),
|
226 |
-
placeholder=i18n("Introduce the model name to search."),
|
227 |
-
interactive=True,
|
228 |
-
)
|
229 |
-
search_table = gr.Dataframe(datatype="markdown")
|
230 |
-
search = gr.Button(i18n("Search"))
|
231 |
-
search.click(
|
232 |
-
fn=search_models,
|
233 |
-
inputs=[search_name],
|
234 |
-
outputs=[search_table],
|
235 |
-
)
|
236 |
-
search_name.submit(search_models, [search_name], search_table)
|
237 |
-
gr.Markdown(value=i18n("## Download Pretrained Models"))
|
238 |
-
pretrained_model = gr.Dropdown(
|
239 |
-
label=i18n("Pretrained"),
|
240 |
-
info=i18n("Select the pretrained model you want to download."),
|
241 |
-
choices=get_pretrained_list(),
|
242 |
-
value="Titan",
|
243 |
-
interactive=True,
|
244 |
-
)
|
245 |
-
pretrained_sample_rate = gr.Dropdown(
|
246 |
-
label=i18n("Sampling Rate"),
|
247 |
-
info=i18n("And select the sampling rate."),
|
248 |
-
choices=get_pretrained_sample_rates(pretrained_model.value),
|
249 |
-
value="40k",
|
250 |
-
interactive=True,
|
251 |
-
allow_custom_value=True,
|
252 |
-
)
|
253 |
-
pretrained_model.change(
|
254 |
-
update_sample_rate_dropdown,
|
255 |
-
inputs=[pretrained_model],
|
256 |
-
outputs=[pretrained_sample_rate],
|
257 |
-
)
|
258 |
-
download_pretrained = gr.Button(i18n("Download"))
|
259 |
-
download_pretrained.click(
|
260 |
-
fn=download_pretrained_model,
|
261 |
-
inputs=[pretrained_model, pretrained_sample_rate],
|
262 |
-
outputs=[],
|
263 |
-
)
|
|
|
1 |
import os
|
|
|
|
|
2 |
import shutil
|
3 |
+
import sys
|
4 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
import requests
|
7 |
|
8 |
now_dir = os.getcwd()
|
9 |
sys.path.append(now_dir)
|
10 |
|
|
|
|
|
|
|
11 |
from assets.i18n.i18n import I18nAuto
|
12 |
|
13 |
i18n = I18nAuto()
|
|
|
18 |
shutil.rmtree(gradio_temp_dir)
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def download_file(url, destination_path, progress_bar):
|
22 |
os.makedirs(os.path.dirname(destination_path), exist_ok=True)
|
23 |
response = requests.get(url, stream=True)
|
|
|
26 |
for data in response.iter_content(block_size):
|
27 |
file.write(data)
|
28 |
progress_bar.update(len(data))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/plugins/plugins_core.py
CHANGED
@@ -1,17 +1,16 @@
|
|
1 |
-
import os, sys, shutil
|
2 |
import json
|
3 |
-
import
|
4 |
-
import zipfile
|
5 |
import subprocess
|
|
|
6 |
|
7 |
from assets.i18n.i18n import I18nAuto
|
|
|
8 |
|
9 |
i18n = I18nAuto()
|
10 |
|
11 |
now_dir = os.getcwd()
|
12 |
sys.path.append(now_dir)
|
13 |
|
14 |
-
from tabs.settings.sections.restart import restart_applio
|
15 |
|
16 |
plugins_path = os.path.join(now_dir, "tabs", "plugins", "installed")
|
17 |
if not os.path.exists(plugins_path):
|
@@ -22,7 +21,7 @@ current_folders = os.listdir(plugins_path)
|
|
22 |
|
23 |
def get_existing_folders():
|
24 |
if os.path.exists(json_file_path):
|
25 |
-
with open(json_file_path
|
26 |
config = json.load(file)
|
27 |
return config["plugins"]
|
28 |
else:
|
@@ -30,7 +29,7 @@ def get_existing_folders():
|
|
30 |
|
31 |
|
32 |
def save_existing_folders(existing_folders):
|
33 |
-
with open(json_file_path
|
34 |
config = json.load(file)
|
35 |
config["plugins"] = existing_folders
|
36 |
with open(json_file_path, "w") as file:
|
|
|
|
|
1 |
import json
|
2 |
+
import os
|
|
|
3 |
import subprocess
|
4 |
+
import sys
|
5 |
|
6 |
from assets.i18n.i18n import I18nAuto
|
7 |
+
from tabs.settings.sections.restart import restart_applio
|
8 |
|
9 |
i18n = I18nAuto()
|
10 |
|
11 |
now_dir = os.getcwd()
|
12 |
sys.path.append(now_dir)
|
13 |
|
|
|
14 |
|
15 |
plugins_path = os.path.join(now_dir, "tabs", "plugins", "installed")
|
16 |
if not os.path.exists(plugins_path):
|
|
|
21 |
|
22 |
def get_existing_folders():
|
23 |
if os.path.exists(json_file_path):
|
24 |
+
with open(json_file_path) as file:
|
25 |
config = json.load(file)
|
26 |
return config["plugins"]
|
27 |
else:
|
|
|
29 |
|
30 |
|
31 |
def save_existing_folders(existing_folders):
|
32 |
+
with open(json_file_path) as file:
|
33 |
config = json.load(file)
|
34 |
config["plugins"] = existing_folders
|
35 |
with open(json_file_path, "w") as file:
|
tts_service/app.py
CHANGED
@@ -7,7 +7,6 @@ import assets.installation_checker as installation_checker
|
|
7 |
import assets.themes.loadThemes as loadThemes
|
8 |
from assets.i18n.i18n import I18nAuto
|
9 |
from core import run_prerequisites_script
|
10 |
-
from tabs.download.download import download_tab
|
11 |
from tabs.plugins import plugins_core
|
12 |
from tabs.tts.tts import tts_tab
|
13 |
from tts_service.utils import env_bool
|
@@ -44,18 +43,15 @@ installation_checker.check_installation()
|
|
44 |
my_applio = loadThemes.load_theme() or "ParityError/Interstellar"
|
45 |
|
46 |
# Define Gradio interface
|
47 |
-
with gr.Blocks(theme=my_applio, title="
|
48 |
gr.Markdown("# Text-to-Speech Playground")
|
49 |
gr.Markdown(i18n("Select a voice model, enter text, and press 'Convert' to synthesize speech."))
|
50 |
with gr.Tab(i18n("TTS")):
|
51 |
tts_tab()
|
52 |
|
53 |
-
with gr.Tab(i18n("Download")):
|
54 |
-
download_tab()
|
55 |
-
|
56 |
|
57 |
def launch_gradio():
|
58 |
-
|
59 |
favicon_path="assets/ICON.ico",
|
60 |
share="--share" in sys.argv,
|
61 |
inbrowser="--open" in sys.argv,
|
|
|
7 |
import assets.themes.loadThemes as loadThemes
|
8 |
from assets.i18n.i18n import I18nAuto
|
9 |
from core import run_prerequisites_script
|
|
|
10 |
from tabs.plugins import plugins_core
|
11 |
from tabs.tts.tts import tts_tab
|
12 |
from tts_service.utils import env_bool
|
|
|
43 |
my_applio = loadThemes.load_theme() or "ParityError/Interstellar"
|
44 |
|
45 |
# Define Gradio interface
|
46 |
+
with gr.Blocks(theme=my_applio, title="TTS Playground", css="footer{display:none !important}") as app:
|
47 |
gr.Markdown("# Text-to-Speech Playground")
|
48 |
gr.Markdown(i18n("Select a voice model, enter text, and press 'Convert' to synthesize speech."))
|
49 |
with gr.Tab(i18n("TTS")):
|
50 |
tts_tab()
|
51 |
|
|
|
|
|
|
|
52 |
|
53 |
def launch_gradio():
|
54 |
+
app.queue(status_update_rate=1).launch(
|
55 |
favicon_path="assets/ICON.ico",
|
56 |
share="--share" in sys.argv,
|
57 |
inbrowser="--open" in sys.argv,
|
tts_service/cli.py
CHANGED
@@ -22,9 +22,9 @@ def main() -> None:
|
|
22 |
@click.option("--share", is_flag=True, help="Share the service")
|
23 |
def serve(share: bool) -> None:
|
24 |
"""Start the TTS Service"""
|
25 |
-
from tts_service.app import
|
26 |
|
27 |
-
|
28 |
|
29 |
|
30 |
@main.group()
|
|
|
22 |
@click.option("--share", is_flag=True, help="Share the service")
|
23 |
def serve(share: bool) -> None:
|
24 |
"""Start the TTS Service"""
|
25 |
+
from tts_service.app import app
|
26 |
|
27 |
+
app.launch(share=share)
|
28 |
|
29 |
|
30 |
@main.group()
|
tts_service/whitelist.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
_.secondary_100 # unused attribute (assets/themes/Applio.py:44)
|
2 |
_.secondary_200 # unused attribute (assets/themes/Applio.py:45)
|
3 |
_.secondary_300 # unused attribute (assets/themes/Applio.py:46)
|
@@ -12,13 +13,10 @@ _.secondary_950 # unused attribute (assets/themes/Applio.py:54)
|
|
12 |
__getattr__ # unused function (rvc/lib/predictors/FCPE.py:799)
|
13 |
_.graph # unused attribute (rvc/lib/zluda.py:33)
|
14 |
_.enabled # unused attribute (rvc/lib/zluda.py:40)
|
15 |
-
rvc # unused import (rvc/train/extract/extract.py:19)
|
16 |
_.nprobe # unused attribute (rvc/train/process/extract_index.py:76)
|
17 |
rvc # unused import (rvc/train/train.py:28)
|
18 |
-
_.deterministic # unused attribute (rvc/train/train.py:
|
19 |
-
_.benchmark # unused attribute (rvc/train/train.py:
|
20 |
-
losses_disc_g # unused variable (rvc/train/train.py:
|
21 |
-
losses_disc_r # unused variable (rvc/train/train.py:
|
22 |
-
losses_gen # unused variable (rvc/train/train.py:
|
23 |
-
components # unused variable (tabs/report/report.py:55)
|
24 |
-
rvc # unused import (tts_service/app.py:19)
|
|
|
1 |
+
Applio # unused class (assets/themes/Applio.py:12)
|
2 |
_.secondary_100 # unused attribute (assets/themes/Applio.py:44)
|
3 |
_.secondary_200 # unused attribute (assets/themes/Applio.py:45)
|
4 |
_.secondary_300 # unused attribute (assets/themes/Applio.py:46)
|
|
|
13 |
__getattr__ # unused function (rvc/lib/predictors/FCPE.py:799)
|
14 |
_.graph # unused attribute (rvc/lib/zluda.py:33)
|
15 |
_.enabled # unused attribute (rvc/lib/zluda.py:40)
|
|
|
16 |
_.nprobe # unused attribute (rvc/train/process/extract_index.py:76)
|
17 |
rvc # unused import (rvc/train/train.py:28)
|
18 |
+
_.deterministic # unused attribute (rvc/train/train.py:78)
|
19 |
+
_.benchmark # unused attribute (rvc/train/train.py:79)
|
20 |
+
losses_disc_g # unused variable (rvc/train/train.py:630)
|
21 |
+
losses_disc_r # unused variable (rvc/train/train.py:630)
|
22 |
+
losses_gen # unused variable (rvc/train/train.py:649)
|
|
|
|
web-root/index.html
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8" />
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
6 |
+
<meta name="description" content="Description of the page" />
|
7 |
+
<meta name="author" content="Author Name" />
|
8 |
+
<script
|
9 |
+
type="module"
|
10 |
+
src="https://gradio.s3-us-west-2.amazonaws.com/4.43.0/gradio.js"
|
11 |
+
></script>
|
12 |
+
<title>TTS Playground</title>
|
13 |
+
</head>
|
14 |
+
<body style="background-color: black">
|
15 |
+
<gradio-app src="https://jlopez00-tts-service.hf.space"></gradio-app>
|
16 |
+
</body>
|
17 |
+
</html>
|