import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from librosa.filters import mel from typing import List # Constants for readability N_MELS = 128 N_CLASS = 360 # Define a helper function for creating convolutional blocks class ConvBlockRes(nn.Module): """ A convolutional block with residual connection. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. momentum (float): Momentum for batch normalization. """ def __init__(self, in_channels, out_channels, momentum=0.01): super(ConvBlockRes, self).__init__() self.conv = nn.Sequential( nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False, ), nn.BatchNorm2d(out_channels, momentum=momentum), nn.ReLU(), nn.Conv2d( in_channels=out_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False, ), nn.BatchNorm2d(out_channels, momentum=momentum), nn.ReLU(), ) if in_channels != out_channels: self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1)) self.is_shortcut = True else: self.is_shortcut = False def forward(self, x): if self.is_shortcut: return self.conv(x) + self.shortcut(x) else: return self.conv(x) + x # Define a class for residual encoder blocks class ResEncoderBlock(nn.Module): """ A residual encoder block. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_size (tuple): Size of the average pooling kernel. n_blocks (int): Number of convolutional blocks in the block. momentum (float): Momentum for batch normalization. """ def __init__( self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01 ): super(ResEncoderBlock, self).__init__() self.n_blocks = n_blocks self.conv = nn.ModuleList() self.conv.append(ConvBlockRes(in_channels, out_channels, momentum)) for _ in range(n_blocks - 1): self.conv.append(ConvBlockRes(out_channels, out_channels, momentum)) self.kernel_size = kernel_size if self.kernel_size is not None: self.pool = nn.AvgPool2d(kernel_size=kernel_size) def forward(self, x): for i in range(self.n_blocks): x = self.conv[i](x) if self.kernel_size is not None: return x, self.pool(x) else: return x # Define a class for the encoder class Encoder(nn.Module): """ The encoder part of the DeepUnet. Args: in_channels (int): Number of input channels. in_size (int): Size of the input tensor. n_encoders (int): Number of encoder blocks. kernel_size (tuple): Size of the average pooling kernel. n_blocks (int): Number of convolutional blocks in each encoder block. out_channels (int): Number of output channels for the first encoder block. momentum (float): Momentum for batch normalization. """ def __init__( self, in_channels, in_size, n_encoders, kernel_size, n_blocks, out_channels=16, momentum=0.01, ): super(Encoder, self).__init__() self.n_encoders = n_encoders self.bn = nn.BatchNorm2d(in_channels, momentum=momentum) self.layers = nn.ModuleList() self.latent_channels = [] for i in range(self.n_encoders): self.layers.append( ResEncoderBlock( in_channels, out_channels, kernel_size, n_blocks, momentum=momentum ) ) self.latent_channels.append([out_channels, in_size]) in_channels = out_channels out_channels *= 2 in_size //= 2 self.out_channel = out_channels def forward(self, x: torch.Tensor): concat_tensors: List[torch.Tensor] = [] x = self.bn(x) for i in range(self.n_encoders): t, x = self.layers[i](x) concat_tensors.append(t) return x, concat_tensors # Define a class for the intermediate layer class Intermediate(nn.Module): """ The intermediate layer of the DeepUnet. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. n_inters (int): Number of convolutional blocks in the intermediate layer. n_blocks (int): Number of convolutional blocks in each intermediate block. momentum (float): Momentum for batch normalization. """ def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01): super(Intermediate, self).__init__() self.n_inters = n_inters self.layers = nn.ModuleList() self.layers.append( ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum) ) for _ in range(self.n_inters - 1): self.layers.append( ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum) ) def forward(self, x): for i in range(self.n_inters): x = self.layers[i](x) return x # Define a class for residual decoder blocks class ResDecoderBlock(nn.Module): """ A residual decoder block. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. stride (tuple): Stride for transposed convolution. n_blocks (int): Number of convolutional blocks in the block. momentum (float): Momentum for batch normalization. """ def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01): super(ResDecoderBlock, self).__init__() out_padding = (0, 1) if stride == (1, 2) else (1, 1) self.n_blocks = n_blocks self.conv1 = nn.Sequential( nn.ConvTranspose2d( in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=stride, padding=(1, 1), output_padding=out_padding, bias=False, ), nn.BatchNorm2d(out_channels, momentum=momentum), nn.ReLU(), ) self.conv2 = nn.ModuleList() self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum)) for _ in range(n_blocks - 1): self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum)) def forward(self, x, concat_tensor): x = self.conv1(x) x = torch.cat((x, concat_tensor), dim=1) for i in range(self.n_blocks): x = self.conv2[i](x) return x # Define a class for the decoder class Decoder(nn.Module): """ The decoder part of the DeepUnet. Args: in_channels (int): Number of input channels. n_decoders (int): Number of decoder blocks. stride (tuple): Stride for transposed convolution. n_blocks (int): Number of convolutional blocks in each decoder block. momentum (float): Momentum for batch normalization. """ def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01): super(Decoder, self).__init__() self.layers = nn.ModuleList() self.n_decoders = n_decoders for _ in range(self.n_decoders): out_channels = in_channels // 2 self.layers.append( ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum) ) in_channels = out_channels def forward(self, x, concat_tensors): for i in range(self.n_decoders): x = self.layers[i](x, concat_tensors[-1 - i]) return x # Define a class for the DeepUnet architecture class DeepUnet(nn.Module): """ The DeepUnet architecture. Args: kernel_size (tuple): Size of the average pooling kernel. n_blocks (int): Number of convolutional blocks in each encoder/decoder block. en_de_layers (int): Number of encoder/decoder layers. inter_layers (int): Number of convolutional blocks in the intermediate layer. in_channels (int): Number of input channels. en_out_channels (int): Number of output channels for the first encoder block. """ def __init__( self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16, ): super(DeepUnet, self).__init__() self.encoder = Encoder( in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels ) self.intermediate = Intermediate( self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks, ) self.decoder = Decoder( self.encoder.out_channel, en_de_layers, kernel_size, n_blocks ) def forward(self, x): x, concat_tensors = self.encoder(x) x = self.intermediate(x) x = self.decoder(x, concat_tensors) return x # Define a class for the end-to-end model class E2E(nn.Module): """ The end-to-end model. Args: n_blocks (int): Number of convolutional blocks in each encoder/decoder block. n_gru (int): Number of GRU layers. kernel_size (tuple): Size of the average pooling kernel. en_de_layers (int): Number of encoder/decoder layers. inter_layers (int): Number of convolutional blocks in the intermediate layer. in_channels (int): Number of input channels. en_out_channels (int): Number of output channels for the first encoder block. """ def __init__( self, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16, ): super(E2E, self).__init__() self.unet = DeepUnet( kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels, ) self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1)) if n_gru: self.fc = nn.Sequential( BiGRU(3 * 128, 256, n_gru), nn.Linear(512, N_CLASS), nn.Dropout(0.25), nn.Sigmoid(), ) else: self.fc = nn.Sequential( nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid() ) def forward(self, mel): mel = mel.transpose(-1, -2).unsqueeze(1) x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2) x = self.fc(x) return x # Define a class for the MelSpectrogram extractor class MelSpectrogram(torch.nn.Module): """ Extracts Mel-spectrogram features from audio. Args: is_half (bool): Whether to use half-precision floating-point numbers. n_mel_channels (int): Number of Mel-frequency bands. sample_rate (int): Sampling rate of the audio. win_length (int): Length of the window function in samples. hop_length (int): Hop size between frames in samples. n_fft (int, optional): Length of the FFT window. Defaults to None, which uses win_length. mel_fmin (int, optional): Minimum frequency for the Mel filter bank. Defaults to 0. mel_fmax (int, optional): Maximum frequency for the Mel filter bank. Defaults to None. clamp (float, optional): Minimum value for clamping the Mel-spectrogram. Defaults to 1e-5. """ def __init__( self, is_half, n_mel_channels, sample_rate, win_length, hop_length, n_fft=None, mel_fmin=0, mel_fmax=None, clamp=1e-5, ): super().__init__() n_fft = win_length if n_fft is None else n_fft self.hann_window = {} mel_basis = mel( sr=sample_rate, n_fft=n_fft, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax, htk=True, ) mel_basis = torch.from_numpy(mel_basis).float() self.register_buffer("mel_basis", mel_basis) self.n_fft = win_length if n_fft is None else n_fft self.hop_length = hop_length self.win_length = win_length self.sample_rate = sample_rate self.n_mel_channels = n_mel_channels self.clamp = clamp self.is_half = is_half def forward(self, audio, keyshift=0, speed=1, center=True): factor = 2 ** (keyshift / 12) n_fft_new = int(np.round(self.n_fft * factor)) win_length_new = int(np.round(self.win_length * factor)) hop_length_new = int(np.round(self.hop_length * speed)) keyshift_key = str(keyshift) + "_" + str(audio.device) if keyshift_key not in self.hann_window: self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to( audio.device ) fft = torch.stft( audio, n_fft=n_fft_new, hop_length=hop_length_new, win_length=win_length_new, window=self.hann_window[keyshift_key], center=center, return_complex=True, ) magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2)) if keyshift != 0: size = self.n_fft // 2 + 1 resize = magnitude.size(1) if resize < size: magnitude = F.pad(magnitude, (0, 0, 0, size - resize)) magnitude = magnitude[:, :size, :] * self.win_length / win_length_new mel_output = torch.matmul(self.mel_basis, magnitude) if self.is_half: mel_output = mel_output.half() log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp)) return log_mel_spec # Define a class for the RMVPE0 predictor class RMVPE0Predictor: """ A predictor for fundamental frequency (F0) based on the RMVPE0 model. Args: model_path (str): Path to the RMVPE0 model file. is_half (bool): Whether to use half-precision floating-point numbers. device (str, optional): Device to use for computation. Defaults to None, which uses CUDA if available. """ def __init__(self, model_path, is_half, device=None): self.resample_kernel = {} model = E2E(4, 1, (2, 2)) ckpt = torch.load(model_path, map_location="cpu") model.load_state_dict(ckpt) model.eval() if is_half: model = model.half() self.model = model self.resample_kernel = {} self.is_half = is_half self.device = device self.mel_extractor = MelSpectrogram( is_half, N_MELS, 16000, 1024, 160, None, 30, 8000 ).to(device) self.model = self.model.to(device) cents_mapping = 20 * np.arange(N_CLASS) + 1997.3794084376191 self.cents_mapping = np.pad(cents_mapping, (4, 4)) def mel2hidden(self, mel): """ Converts Mel-spectrogram features to hidden representation. Args: mel (torch.Tensor): Mel-spectrogram features. """ with torch.no_grad(): n_frames = mel.shape[-1] mel = F.pad( mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect" ) hidden = self.model(mel) return hidden[:, :n_frames] def decode(self, hidden, thred=0.03): """ Decodes hidden representation to F0. Args: hidden (np.ndarray): Hidden representation. thred (float, optional): Threshold for salience. Defaults to 0.03. """ cents_pred = self.to_local_average_cents(hidden, thred=thred) f0 = 10 * (2 ** (cents_pred / 1200)) f0[f0 == 10] = 0 return f0 def infer_from_audio(self, audio, thred=0.03): """ Infers F0 from audio. Args: audio (np.ndarray): Audio signal. thred (float, optional): Threshold for salience. Defaults to 0.03. """ audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0) mel = self.mel_extractor(audio, center=True) hidden = self.mel2hidden(mel) hidden = hidden.squeeze(0).cpu().numpy() if self.is_half == True: hidden = hidden.astype("float32") f0 = self.decode(hidden, thred=thred) return f0 def to_local_average_cents(self, salience, thred=0.05): """ Converts salience to local average cents. Args: salience (np.ndarray): Salience values. thred (float, optional): Threshold for salience. Defaults to 0.05. """ center = np.argmax(salience, axis=1) salience = np.pad(salience, ((0, 0), (4, 4))) center += 4 todo_salience = [] todo_cents_mapping = [] starts = center - 4 ends = center + 5 for idx in range(salience.shape[0]): todo_salience.append(salience[:, starts[idx] : ends[idx]][idx]) todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]]) todo_salience = np.array(todo_salience) todo_cents_mapping = np.array(todo_cents_mapping) product_sum = np.sum(todo_salience * todo_cents_mapping, 1) weight_sum = np.sum(todo_salience, 1) devided = product_sum / weight_sum maxx = np.max(salience, axis=1) devided[maxx <= thred] = 0 return devided # Define a class for BiGRU (bidirectional GRU) class BiGRU(nn.Module): """ A bidirectional GRU layer. Args: input_features (int): Number of input features. hidden_features (int): Number of hidden features. num_layers (int): Number of GRU layers. """ def __init__(self, input_features, hidden_features, num_layers): super(BiGRU, self).__init__() self.gru = nn.GRU( input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True, ) def forward(self, x): return self.gru(x)[0]