import os import subprocess import sys from functools import lru_cache from rvc.lib.tools.model_download import model_download_pipeline from rvc.lib.tools.prerequisites_download import prequisites_download_pipeline from tts_service.utils import cache_path from tts_service.voices import voice_manager python = sys.executable @lru_cache(maxsize=None) def import_voice_converter(): from rvc.infer.infer import VoiceConverter return VoiceConverter() # TTS def run_tts_script( tts_text: str, voice_name: str, tts_rate: int, ) -> tuple[str, str]: tts_script_path = os.path.join("rvc", "lib", "tools", "tts.py") voice = voice_manager.voices[voice_name] format = "wav" output_tts_path = cache_path(voice.tts, tts_text, extension=format) if not os.path.exists(output_tts_path): command_tts = [ *map( str, [ python, tts_script_path, "", # tts_file tts_text, voice.tts, tts_rate, output_tts_path, ], ), ] subprocess.run(command_tts) output_rvc_path = cache_path(voice.tts, voice.name, tts_text, extension=format) if not os.path.exists(output_rvc_path): infer_pipeline = import_voice_converter() infer_pipeline.convert_audio( pitch=voice.pitch, filter_radius=voice.filter_radius, index_rate=voice.index_rate, volume_envelope=voice.rms_mix_rate, protect=voice.protect, hop_length=voice.hop_length, f0_method=voice.f0_method, audio_input_path=str(output_tts_path), audio_output_path=str(output_rvc_path), model_path=voice.model, index_path=voice.index, split_audio=False, f0_autotune=voice.autotune is not None, f0_autotune_strength=voice.autotune, clean_audio=voice.clean is not None, clean_strength=voice.clean, export_format=format.upper(), upscale_audio=voice.upscale, f0_file=None, embedder_model=voice.embedder_model, embedder_model_custom=None, sid=0, formant_shifting=None, formant_qfrency=None, formant_timbre=None, post_process=None, reverb=None, pitch_shift=None, limiter=None, gain=None, distortion=None, chorus=None, bitcrush=None, clipping=None, compressor=None, delay=None, sliders=None, ) return "Text synthesized successfully.", str(output_rvc_path) # Download def run_download_script(model_link: str): model_download_pipeline(model_link) return "Model downloaded successfully." # Prerequisites def run_prerequisites_script( pretraineds_v1_f0: bool, pretraineds_v1_nof0: bool, pretraineds_v2_f0: bool, pretraineds_v2_nof0: bool, models: bool, voices: bool, ): prequisites_download_pipeline( pretraineds_v1_f0, pretraineds_v1_nof0, pretraineds_v2_f0, pretraineds_v2_nof0, models, voices, ) return "Prerequisites installed successfully."