import os, sys import librosa import soundfile as sf import numpy as np import re import unicodedata import wget from torch import nn import logging from transformers import HubertModel import warnings # Remove this to see warnings about transformers models warnings.filterwarnings("ignore") logging.getLogger("fairseq").setLevel(logging.ERROR) logging.getLogger("faiss.loader").setLevel(logging.ERROR) logging.getLogger("transformers").setLevel(logging.ERROR) logging.getLogger("torch").setLevel(logging.ERROR) now_dir = os.getcwd() sys.path.append(now_dir) base_path = os.path.join(now_dir, "rvc", "models", "formant", "stftpitchshift") stft = base_path + ".exe" if sys.platform == "win32" else base_path class HubertModelWithFinalProj(HubertModel): def __init__(self, config): super().__init__(config) self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size) def load_audio_infer( file, sample_rate, **kwargs, ): formant_shifting = kwargs.get("formant_shifting", False) try: file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ") if not os.path.isfile(file): raise FileNotFoundError(f"File not found: {file}") audio, sr = sf.read(file) if len(audio.shape) > 1: audio = librosa.to_mono(audio.T) if sr != sample_rate: audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate) if formant_shifting: formant_qfrency = kwargs.get("formant_qfrency", 0.8) formant_timbre = kwargs.get("formant_timbre", 0.8) from stftpitchshift import StftPitchShift pitchshifter = StftPitchShift(1024, 32, sample_rate) audio = pitchshifter.shiftpitch( audio, factors=1, quefrency=formant_qfrency * 1e-3, distortion=formant_timbre, ) except Exception as error: raise RuntimeError(f"An error occurred loading the audio: {error}") return np.array(audio).flatten() def format_title(title): formatted_title = ( unicodedata.normalize("NFKD", title).encode("ascii", "ignore").decode("utf-8") ) formatted_title = re.sub(r"[\u2500-\u257F]+", "", formatted_title) formatted_title = re.sub(r"[^\w\s.-]", "", formatted_title) formatted_title = re.sub(r"\s+", "_", formatted_title) return formatted_title def load_embedding(embedder_model, custom_embedder=None): embedder_root = os.path.join(now_dir, "rvc", "models", "embedders") embedding_list = { "contentvec": os.path.join(embedder_root, "contentvec"), "chinese-hubert-base": os.path.join(embedder_root, "chinese_hubert_base"), "japanese-hubert-base": os.path.join(embedder_root, "japanese_hubert_base"), "korean-hubert-base": os.path.join(embedder_root, "korean_hubert_base"), } online_embedders = { "contentvec": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/contentvec/pytorch_model.bin", "chinese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/chinese_hubert_base/pytorch_model.bin", "japanese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/japanese_hubert_base/pytorch_model.bin", "korean-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/korean_hubert_base/pytorch_model.bin", } config_files = { "contentvec": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/contentvec/config.json", "chinese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/chinese_hubert_base/config.json", "japanese-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/japanese_hubert_base/config.json", "korean-hubert-base": "https://huggingface.co/IAHispano/Applio/resolve/main/Resources/embedders/korean_hubert_base/config.json", } if embedder_model == "custom": if os.path.exists(custom_embedder): model_path = custom_embedder else: print(f"Custom embedder not found: {custom_embedder}, using contentvec") model_path = embedding_list["contentvec"] else: model_path = embedding_list[embedder_model] bin_file = os.path.join(model_path, "pytorch_model.bin") json_file = os.path.join(model_path, "config.json") os.makedirs(model_path, exist_ok=True) if not os.path.exists(bin_file): url = online_embedders[embedder_model] print(f"Downloading {url} to {model_path}...") wget.download(url, out=bin_file) if not os.path.exists(json_file): url = config_files[embedder_model] print(f"Downloading {url} to {model_path}...") wget.download(url, out=json_file) models = HubertModelWithFinalProj.from_pretrained(model_path) return models