import numpy as np import librosa def process_audio(audio, sr=16000, silence_thresh=-60, min_silence_len=250): """ Splits an audio signal into segments using a fixed frame size and hop size. Parameters: - audio (np.ndarray): The audio signal to split. - sr (int): The sample rate of the input audio (default is 16000). - silence_thresh (int): Silence threshold (default =-60dB) - min_silence_len (int): Minimum silence duration (default 250ms). Returns: - list of np.ndarray: A list of audio segments. - np.ndarray: The intervals where the audio was split. """ frame_length = int(min_silence_len / 1000 * sr) hop_length = frame_length // 2 intervals = librosa.effects.split( audio, top_db=-silence_thresh, frame_length=frame_length, hop_length=hop_length ) audio_segments = [audio[start:end] for start, end in intervals] return audio_segments, intervals def merge_audio(audio_segments, intervals, sr_orig, sr_new): """ Merges audio segments back into a single audio signal, filling gaps with silence. Parameters: - audio_segments (list of np.ndarray): The non-silent audio segments. - intervals (np.ndarray): The intervals used for splitting the original audio. - sr_orig (int): The sample rate of the original audio - sr_new (int): The sample rate of the model Returns: - np.ndarray: The merged audio signal with silent gaps restored. """ sr_ratio = sr_new / sr_orig if sr_new > sr_orig else 1.0 merged_audio = np.zeros( int(intervals[0][0] * sr_ratio if intervals[0][0] > 0 else 0), dtype=audio_segments[0].dtype, ) merged_audio = np.concatenate((merged_audio, audio_segments[0])) for i in range(1, len(intervals)): silence_duration = int((intervals[i][0] - intervals[i - 1][1]) * sr_ratio) silence = np.zeros(silence_duration, dtype=audio_segments[0].dtype) merged_audio = np.concatenate((merged_audio, silence, audio_segments[i])) return merged_audio