import os import sys import glob import time import tqdm import torch import torchcrepe import numpy as np import concurrent.futures import multiprocessing as mp import json import shutil from distutils.util import strtobool now_dir = os.getcwd() sys.path.append(os.path.join(now_dir)) # Zluda hijack import rvc.lib.zluda from rvc.lib.utils import load_audio, load_embedding from rvc.train.extract.preparing_files import generate_config, generate_filelist from rvc.lib.predictors.RMVPE import RMVPE0Predictor from rvc.configs.config import Config # Load config config = Config() mp.set_start_method("spawn", force=True) class FeatureInput: """Class for F0 extraction.""" def __init__(self, sample_rate=16000, hop_size=160, device="cpu"): self.fs = sample_rate self.hop = hop_size self.f0_bin = 256 self.f0_max = 1100.0 self.f0_min = 50.0 self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) self.device = device self.model_rmvpe = None def compute_f0(self, np_arr, f0_method, hop_length): """Extract F0 using the specified method.""" if f0_method == "crepe": return self.get_crepe(np_arr, hop_length) elif f0_method == "rmvpe": return self.model_rmvpe.infer_from_audio(np_arr, thred=0.03) else: raise ValueError(f"Unknown F0 method: {f0_method}") def get_crepe(self, x, hop_length): """Extract F0 using CREPE.""" audio = torch.from_numpy(x.astype(np.float32)).to(self.device) audio /= torch.quantile(torch.abs(audio), 0.999) audio = audio.unsqueeze(0) pitch = torchcrepe.predict( audio, self.fs, hop_length, self.f0_min, self.f0_max, "full", batch_size=hop_length * 2, device=audio.device, pad=True, ) source = pitch.squeeze(0).cpu().float().numpy() source[source < 0.001] = np.nan target = np.interp( np.arange(0, len(source) * (x.size // self.hop), len(source)) / (x.size // self.hop), np.arange(0, len(source)), source, ) return np.nan_to_num(target) def coarse_f0(self, f0): """Convert F0 to coarse F0.""" f0_mel = 1127 * np.log(1 + f0 / 700) f0_mel = np.clip( (f0_mel - self.f0_mel_min) * (self.f0_bin - 2) / (self.f0_mel_max - self.f0_mel_min) + 1, 1, self.f0_bin - 1, ) return np.rint(f0_mel).astype(int) def process_file(self, file_info, f0_method, hop_length): """Process a single audio file for F0 extraction.""" inp_path, opt_path1, opt_path2, _ = file_info if os.path.exists(opt_path1) and os.path.exists(opt_path2): return try: np_arr = load_audio(inp_path, 16000) feature_pit = self.compute_f0(np_arr, f0_method, hop_length) np.save(opt_path2, feature_pit, allow_pickle=False) coarse_pit = self.coarse_f0(feature_pit) np.save(opt_path1, coarse_pit, allow_pickle=False) except Exception as error: print( f"An error occurred extracting file {inp_path} on {self.device}: {error}" ) def process_files( self, files, f0_method, hop_length, device_num, device, n_threads ): """Process multiple files.""" self.device = device if f0_method == "rmvpe": self.model_rmvpe = RMVPE0Predictor( os.path.join("rvc", "models", "predictors", "rmvpe.pt"), is_half=False, device=device, ) else: n_threads = 1 n_threads = 1 if n_threads == 0 else n_threads def process_file_wrapper(file_info): self.process_file(file_info, f0_method, hop_length) with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar: # using multi-threading with concurrent.futures.ThreadPoolExecutor( max_workers=n_threads ) as executor: futures = [ executor.submit(process_file_wrapper, file_info) for file_info in files ] for future in concurrent.futures.as_completed(futures): pbar.update(1) def run_pitch_extraction(files, devices, f0_method, hop_length, num_processes): devices_str = ", ".join(devices) print( f"Starting pitch extraction with {num_processes} cores on {devices_str} using {f0_method}..." ) start_time = time.time() fe = FeatureInput() # split the task between devices ps = [] num_devices = len(devices) for i, device in enumerate(devices): p = mp.Process( target=fe.process_files, args=( files[i::num_devices], f0_method, hop_length, i, device, num_processes // num_devices, ), ) ps.append(p) p.start() for i, device in enumerate(devices): ps[i].join() elapsed_time = time.time() - start_time print(f"Pitch extraction completed in {elapsed_time:.2f} seconds.") def process_file_embedding( files, version, embedder_model, embedder_model_custom, device_num, device, n_threads ): dtype = torch.float16 if config.is_half and "cuda" in device else torch.float32 model = load_embedding(embedder_model, embedder_model_custom).to(dtype).to(device) n_threads = 1 if n_threads == 0 else n_threads def process_file_embedding_wrapper(file_info): wav_file_path, _, _, out_file_path = file_info if os.path.exists(out_file_path): return feats = torch.from_numpy(load_audio(wav_file_path, 16000)).to(dtype).to(device) feats = feats.view(1, -1) with torch.no_grad(): feats = model(feats)["last_hidden_state"] feats = ( model.final_proj(feats[0]).unsqueeze(0) if version == "v1" else feats ) feats = feats.squeeze(0).float().cpu().numpy() if not np.isnan(feats).any(): np.save(out_file_path, feats, allow_pickle=False) else: print(f"{file} contains NaN values and will be skipped.") with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar: # using multi-threading with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as executor: futures = [ executor.submit(process_file_embedding_wrapper, file_info) for file_info in files ] for future in concurrent.futures.as_completed(futures): pbar.update(1) def run_embedding_extraction( files, devices, version, embedder_model, embedder_model_custom ): start_time = time.time() devices_str = ", ".join(devices) print( f"Starting embedding extraction with {num_processes} cores on {devices_str}..." ) # split the task between devices ps = [] num_devices = len(devices) for i, device in enumerate(devices): p = mp.Process( target=process_file_embedding, args=( files[i::num_devices], version, embedder_model, embedder_model_custom, i, device, num_processes // num_devices, ), ) ps.append(p) p.start() for i, device in enumerate(devices): ps[i].join() elapsed_time = time.time() - start_time print(f"Embedding extraction completed in {elapsed_time:.2f} seconds.") if __name__ == "__main__": exp_dir = sys.argv[1] f0_method = sys.argv[2] hop_length = int(sys.argv[3]) num_processes = int(sys.argv[4]) gpus = sys.argv[5] version = sys.argv[6] sample_rate = sys.argv[7] embedder_model = sys.argv[8] embedder_model_custom = sys.argv[9] if len(sys.argv) > 10 else None # prep wav_path = os.path.join(exp_dir, "sliced_audios_16k") os.makedirs(os.path.join(exp_dir, "f0"), exist_ok=True) os.makedirs(os.path.join(exp_dir, "f0_voiced"), exist_ok=True) os.makedirs(os.path.join(exp_dir, version + "_extracted"), exist_ok=True) # write to model_info.json chosen_embedder_model = ( embedder_model_custom if embedder_model == "custom" else embedder_model ) file_path = os.path.join(exp_dir, "model_info.json") if os.path.exists(file_path): with open(file_path, "r") as f: data = json.load(f) else: data = {} data.update( { "embedder_model": chosen_embedder_model, } ) with open(file_path, "w") as f: json.dump(data, f, indent=4) files = [] for file in glob.glob(os.path.join(wav_path, "*.wav")): file_name = os.path.basename(file) file_info = [ file, # full path to sliced 16k wav os.path.join(exp_dir, "f0", file_name + ".npy"), os.path.join(exp_dir, "f0_voiced", file_name + ".npy"), os.path.join( exp_dir, version + "_extracted", file_name.replace("wav", "npy") ), ] files.append(file_info) devices = ["cpu"] if gpus == "-" else [f"cuda:{idx}" for idx in gpus.split("-")] # Run Pitch Extraction run_pitch_extraction(files, devices, f0_method, hop_length, num_processes) # Run Embedding Extraction run_embedding_extraction( files, devices, version, embedder_model, embedder_model_custom ) # Run Preparing Files generate_config(version, sample_rate, exp_dir) generate_filelist(exp_dir, version, sample_rate)