import torch import torch.utils.data from librosa.filters import mel as librosa_mel_fn def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): """ Dynamic range compression using log10. Args: x (torch.Tensor): Input tensor. C (float, optional): Scaling factor. Defaults to 1. clip_val (float, optional): Minimum value for clamping. Defaults to 1e-5. """ return torch.log(torch.clamp(x, min=clip_val) * C) def spectral_normalize_torch(magnitudes): """ Spectral normalization using dynamic range compression. Args: magnitudes (torch.Tensor): Magnitude spectrogram. """ return dynamic_range_compression_torch(magnitudes) mel_basis = {} hann_window = {} def spectrogram_torch(y, n_fft, hop_size, win_size, center=False): """ Compute the spectrogram of a signal using STFT. Args: y (torch.Tensor): Input signal. n_fft (int): FFT window size. hop_size (int): Hop size between frames. win_size (int): Window size. center (bool, optional): Whether to center the window. Defaults to False. """ global hann_window dtype_device = str(y.dtype) + "_" + str(y.device) wnsize_dtype_device = str(win_size) + "_" + dtype_device if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to( dtype=y.dtype, device=y.device ) y = torch.nn.functional.pad( y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect", ) y = y.squeeze(1) spec = torch.stft( y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True, ) spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6) return spec def spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax): """ Convert a spectrogram to a mel-spectrogram. Args: spec (torch.Tensor): Magnitude spectrogram. n_fft (int): FFT window size. num_mels (int): Number of mel frequency bins. sample_rate (int): Sampling rate of the audio signal. fmin (float): Minimum frequency. fmax (float): Maximum frequency. """ global mel_basis dtype_device = str(spec.dtype) + "_" + str(spec.device) fmax_dtype_device = str(fmax) + "_" + dtype_device if fmax_dtype_device not in mel_basis: mel = librosa_mel_fn( sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax ) mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to( dtype=spec.dtype, device=spec.device ) melspec = torch.matmul(mel_basis[fmax_dtype_device], spec) melspec = spectral_normalize_torch(melspec) return melspec def mel_spectrogram_torch( y, n_fft, num_mels, sample_rate, hop_size, win_size, fmin, fmax, center=False ): """ Compute the mel-spectrogram of a signal. Args: y (torch.Tensor): Input signal. n_fft (int): FFT window size. num_mels (int): Number of mel frequency bins. sample_rate (int): Sampling rate of the audio signal. hop_size (int): Hop size between frames. win_size (int): Window size. fmin (float): Minimum frequency. fmax (float): Maximum frequency. center (bool, optional): Whether to center the window. Defaults to False. """ spec = spectrogram_torch(y, n_fft, hop_size, win_size, center) melspec = spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax) return melspec