Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,8 +2,16 @@ import os
|
|
| 2 |
os.system("pip install git+https://github.com/openai/whisper.git")
|
| 3 |
import gradio as gr
|
| 4 |
import whisper
|
|
|
|
| 5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
#call tokenizer and NLP model for text classification
|
|
@@ -14,6 +22,17 @@ model_nlp = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitt
|
|
| 14 |
# call whisper model for audio/speech processing
|
| 15 |
model = whisper.load_model("small")
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def inference_audio(audio):
|
| 19 |
audio = whisper.load_audio(audio)
|
|
@@ -36,6 +55,49 @@ def inference_text(audio):
|
|
| 36 |
|
| 37 |
return res['label'],res['score']
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
audio = gr.Audio(
|
| 40 |
label="Input Audio",
|
| 41 |
show_label=False,
|
|
@@ -44,7 +106,7 @@ audio = gr.Audio(
|
|
| 44 |
)
|
| 45 |
|
| 46 |
|
| 47 |
-
app=gr.Interface(title="Sentiment Audio Analysis",fn=
|
| 48 |
|
| 49 |
|
| 50 |
|
|
|
|
| 2 |
os.system("pip install git+https://github.com/openai/whisper.git")
|
| 3 |
import gradio as gr
|
| 4 |
import whisper
|
| 5 |
+
from huggingface_hub import from_pretrained_keras
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
from transformers import pipeline
|
| 8 |
+
import librosa
|
| 9 |
+
import librosa.display
|
| 10 |
+
from sklearn.preprocessing import StandardScaler
|
| 11 |
+
import logging
|
| 12 |
+
import numpy
|
| 13 |
+
import pickle
|
| 14 |
+
|
| 15 |
|
| 16 |
|
| 17 |
#call tokenizer and NLP model for text classification
|
|
|
|
| 22 |
# call whisper model for audio/speech processing
|
| 23 |
model = whisper.load_model("small")
|
| 24 |
|
| 25 |
+
# call model for audio emotions
|
| 26 |
+
reloaded_model = from_pretrained_keras('jmparejaz/RAVDESS-CREMAD_AudioEmotionClassifier')
|
| 27 |
+
|
| 28 |
+
# call scaler and decoder
|
| 29 |
+
with open("scaler.pkl", "rb") as f:
|
| 30 |
+
scaler = pickle.load(f)
|
| 31 |
+
|
| 32 |
+
with open("encoder.pkl", "rb") as f:
|
| 33 |
+
encoder = pickle.load(f)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
|
| 37 |
def inference_audio(audio):
|
| 38 |
audio = whisper.load_audio(audio)
|
|
|
|
| 55 |
|
| 56 |
return res['label'],res['score']
|
| 57 |
|
| 58 |
+
|
| 59 |
+
def extract_features(data):
|
| 60 |
+
# ZCR
|
| 61 |
+
result = np.array([])
|
| 62 |
+
zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0)
|
| 63 |
+
result=np.hstack((result, zcr)) # stacking horizontally
|
| 64 |
+
|
| 65 |
+
# Chroma_stft
|
| 66 |
+
stft = np.abs(librosa.stft(data))
|
| 67 |
+
chroma_stft = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0)
|
| 68 |
+
result = np.hstack((result, chroma_stft)) # stacking horizontally
|
| 69 |
+
|
| 70 |
+
# MFCC
|
| 71 |
+
mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T, axis=0)
|
| 72 |
+
result = np.hstack((result, mfcc)) # stacking horizontally
|
| 73 |
+
|
| 74 |
+
# Root Mean Square Value
|
| 75 |
+
rms = np.mean(librosa.feature.rms(y=data).T, axis=0)
|
| 76 |
+
result = np.hstack((result, rms)) # stacking horizontally
|
| 77 |
+
|
| 78 |
+
# MelSpectogram
|
| 79 |
+
mel = np.mean(librosa.feature.melspectrogram(y=data, sr=sample_rate).T, axis=0)
|
| 80 |
+
result = np.hstack((result, mel)) # stacking horizontally
|
| 81 |
+
|
| 82 |
+
return result
|
| 83 |
+
|
| 84 |
+
def audio_emotions(audio):
|
| 85 |
+
data = audio.flatten()
|
| 86 |
+
sr=22050
|
| 87 |
+
features_audio = extract_features(data)
|
| 88 |
+
features_audio = np.array(features_audio)
|
| 89 |
+
scaled_features=scaler.transform(features_audio)
|
| 90 |
+
scaled_features = np.expand_dims(scaled_features, axis=2)
|
| 91 |
+
prediction=reloaded_model.predict(scaled_features)
|
| 92 |
+
y_pred = encoder.inverse_transform(prediction)
|
| 93 |
+
return y_pred
|
| 94 |
+
|
| 95 |
+
def main(audio):
|
| 96 |
+
r1,r2=inference_text(audio)
|
| 97 |
+
r3=audio_emotions(audio)
|
| 98 |
+
return r1,r2,r3
|
| 99 |
+
|
| 100 |
+
|
| 101 |
audio = gr.Audio(
|
| 102 |
label="Input Audio",
|
| 103 |
show_label=False,
|
|
|
|
| 106 |
)
|
| 107 |
|
| 108 |
|
| 109 |
+
app=gr.Interface(title="Sentiment Audio Analysis",fn=main,inputs=[audio], outputs=["text","text","text"])
|
| 110 |
|
| 111 |
|
| 112 |
|