jmparejaz's picture
Update app.py
6ec5987
raw
history blame
961 Bytes
import gradio as gr
from huggingface_hub import from_pretrained_keras
import numpy as np
import logging
from PIL import Image
def fun(a):
Im=Image.fromarray(a).resize((48,48))
reloaded_model = from_pretrained_keras('jmparejaz/Facial_Age-gender-eth_Recognition')
reloaded_model_eth = from_pretrained_keras('jmparejaz/Facial_eth_recognition')
#img=load_img(a, grayscale=True)
a=np.asarray(Im)
a=a.reshape(1, 48, 48, 1)
a=a/255
#reshape((-1,48,48,1))
pred=reloaded_model.predict(a)
pred_eth=reloaded_model_eth.predict(a)
dict_gender={0:'Male',1:'Female'}
dict_eth={0:"White", 1:"Black", 2:"Asian", 3:"Indian", 4:"Hispanic"}
a = dict_gender[np.round(pred[0][0][0])]
b = np.round(pred[1][0][0])
c = dict_eth[np.argmax(pred_eth)]
return a,b,c
gr.Interface(fn=fun, inputs=gr.inputs.Image(image_mode='L',type='numpy',invert_colors=False), outputs=["text","text","text"]).launch()