Joaquin Romero Flores
commited on
Commit
•
03df72a
1
Parent(s):
8f3d1a6
laoding the model to hugging face hub
Browse files- app.py +105 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from huggingface_hub import from_pretrained_keras
|
6 |
+
|
7 |
+
st.header("X-ray tooth segmentation")
|
8 |
+
|
9 |
+
st.markdown(
|
10 |
+
"""
|
11 |
+
This model was created by [SerdarHelli](https://huggingface.co/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net).
|
12 |
+
"""
|
13 |
+
)
|
14 |
+
|
15 |
+
## Select and load the model
|
16 |
+
model_id = "SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net"
|
17 |
+
model = from_pretrained_keras(model_id)
|
18 |
+
|
19 |
+
## Allows the user to upload an image
|
20 |
+
archivo_imagen = st.file_uploader("Sube aquí tu imagen.", type=["png", "jpg", "jpeg"])
|
21 |
+
|
22 |
+
## If an image has more than one channel then it is converted to grayscale (1 channel)
|
23 |
+
def convertir_one_channel(img):
|
24 |
+
if len(img.shape) > 2:
|
25 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
26 |
+
return img
|
27 |
+
else:
|
28 |
+
return img
|
29 |
+
|
30 |
+
|
31 |
+
def convertir_rgb(img):
|
32 |
+
if len(img.shape) == 2:
|
33 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
34 |
+
return img
|
35 |
+
else:
|
36 |
+
return img
|
37 |
+
|
38 |
+
|
39 |
+
## We'll manipulate the interface so we can use example images
|
40 |
+
## If the user clicks on an example then the model will run with it
|
41 |
+
ejemplos = ["dientes_1.png", "dientes_2.png", "dientes_3.png"]
|
42 |
+
|
43 |
+
|
44 |
+
## Let's create three columns; In each one there will be an example image
|
45 |
+
col1, col2, col3 = st.columns(3)
|
46 |
+
with col1:
|
47 |
+
## Load the image & show the interface
|
48 |
+
ex = Image.open(ejemplos[0])
|
49 |
+
st.image(ex, width=200)
|
50 |
+
## If push the button then, let's use that example within the model
|
51 |
+
if st.button("Corre este ejemplo 1"):
|
52 |
+
archivo_imagen = ejemplos[0]
|
53 |
+
|
54 |
+
with col2:
|
55 |
+
ex1 = Image.open(ejemplos[1])
|
56 |
+
st.image(ex1, width=200)
|
57 |
+
if st.button("Corre este ejemplo 2"):
|
58 |
+
archivo_imagen = ejemplos[1]
|
59 |
+
|
60 |
+
with col3:
|
61 |
+
ex2 = Image.open(ejemplos[2])
|
62 |
+
st.image(ex2, width=200)
|
63 |
+
if st.button("Corre este ejemplo 3"):
|
64 |
+
archivo_imagen = ejemplos[2]
|
65 |
+
|
66 |
+
|
67 |
+
## If we have an image to input into the model then
|
68 |
+
## we process it and enter the model
|
69 |
+
if archivo_imagen is not None:
|
70 |
+
## We load the image with PIL, display it and convert it to a NumPy array
|
71 |
+
img = Image.open(archivo_imagen)
|
72 |
+
st.image(img, width=850)
|
73 |
+
img = np.asarray(img)
|
74 |
+
|
75 |
+
## We process the image to enter it into the model
|
76 |
+
img_cv = convertir_one_channel(img)
|
77 |
+
img_cv = cv2.resize(img_cv, (512, 512), interpolation=cv2.INTER_LANCZOS4)
|
78 |
+
img_cv = np.float32(img_cv / 255)
|
79 |
+
img_cv = np.reshape(img_cv, (1, 512, 512, 1))
|
80 |
+
|
81 |
+
## We enter the NumPy array to the model
|
82 |
+
predicted = model.predict(img_cv)
|
83 |
+
predicted = predicted[0]
|
84 |
+
|
85 |
+
## We return the image to its original shape and add the segmentation masks
|
86 |
+
predicted = cv2.resize(
|
87 |
+
predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4
|
88 |
+
)
|
89 |
+
mask = np.uint8(predicted * 255) #
|
90 |
+
_, mask = cv2.threshold(
|
91 |
+
mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
92 |
+
)
|
93 |
+
kernel = np.ones((5, 5), dtype=np.float32)
|
94 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
95 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1)
|
96 |
+
cnts, hieararch = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
97 |
+
output = cv2.drawContours(convertir_one_channel(img), cnts, -1, (255, 0, 0), 3)
|
98 |
+
|
99 |
+
## If we successfully got a result then we show it in the interface
|
100 |
+
if output is not None:
|
101 |
+
st.subheader("Segmentación:")
|
102 |
+
st.write(output.shape)
|
103 |
+
st.image(output, width=850)
|
104 |
+
|
105 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
Pillow
|
3 |
+
scipy
|
4 |
+
opencv-python
|
5 |
+
tensorflow
|