# Utils Standards # Numerical Management import numpy as np # Pythorch import torch # A hugging face library from huggan.pytorch.lightweight_gan.leightweight_gan import LightweightGAN """Let's now set up the model functions""" def load_model(model_name = "ceyda/butterfly_cropped_uniq1K_512", model_version=None): # GAN set-up gan = LightweightGAN.from_pretrained(model_name, versio=model_version) # GAN Inference Evaluation gan.eval() return gan # Let's set-up a second function for generation form def generate(gan, batch_size=1): with torch.no_grad(): # Cleaning process to properly fit it to the model ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255 # ims = ims.permute(0, 2, 3, 1).deatch().cpu().numpy().astype(np.uint8) return ims