File size: 9,407 Bytes
bd89ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f9f282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd89ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""
Hold the training script for the medusa model.

Adapted from the original code here: https://github.com/FasterDecoding/Medusa/blob/main/medusa/train/train.py
"""

import os
from dataclasses import dataclass, field
import pathlib
from typing import Dict, Optional

import torch
from torch.utils.data import Dataset
import transformers
from transformers import Trainer, BitsAndBytesConfig
from transformers.trainer_pt_utils import LabelSmoother
from torch.nn import CrossEntropyLoss
from medusa.model.medusa_model import MedusaModel, MedusaConfig

from calibration_datasets import CalibrationDataset


IGNORE_TOKEN_ID = LabelSmoother.ignore_index


# Customized for training Medusa heads
class CustomizedTrainer(Trainer):
    def compute_loss(self, model, inputs, return_outputs=False):
        """
        Compute the training loss for the model.

        Args:
            model (torch.nn.Module): The model for which to compute the loss.
            inputs (dict): The input data, including input IDs, attention mask, and labels.
            return_outputs (bool): Whether to return model outputs along with the loss.

        Returns:
            Union[float, Tuple[float, torch.Tensor]]: The computed loss, optionally with model outputs.
        """
        # DDP will give us model.module
        if hasattr(model, "module"):
            medusa = model.module.medusa
        else:
            medusa = model.medusa

        logits = model(
            input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]
        )
        labels = inputs["labels"]
        # Shift so that tokens < n predict n
        loss = 0
        loss_fct = CrossEntropyLoss()
        log = {}
        for i in range(medusa):
            medusa_logits = logits[i, :, : -(2 + i)].contiguous()
            medusa_labels = labels[..., 2 + i :].contiguous()
            medusa_logits = medusa_logits.view(-1, logits.shape[-1])
            medusa_labels = medusa_labels.view(-1)
            medusa_labels = medusa_labels.to(medusa_logits.device)
            loss_i = loss_fct(medusa_logits, medusa_labels)
            loss += loss_i
            not_ignore = medusa_labels.ne(IGNORE_TOKEN_ID)
            medusa_labels = medusa_labels[not_ignore]

            # Add top-k accuracy
            for k in range(1, 6):
                _, topk = medusa_logits.topk(k, dim=-1)
                topk = topk[not_ignore]
                correct = topk.eq(medusa_labels.unsqueeze(-1)).any(-1)
                log[f"medusa{i}_top{k}"] = correct.float().mean().item()

            log[f"medusa{i}_loss"] = loss_i.item()
        self.log(log)
        return (loss, logits) if return_outputs else loss


@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field()
    load_in_4bit: bool = field(
        default=False,
        metadata={"help": "Load in 4 bit."},
    )
    load_in_8bit: bool = field(
        default=False,
        metadata={"help": "Load in 8 bit."},
    )


@dataclass
class DataArguments:
    dataset: str = field(
        metadata={"help": "One of the datasets names in a CalibrationDataset subclass."},
    )


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    model_max_length: int = field(
        default=2048,
        metadata={
            "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    medusa_num_heads: int = field(
        default=1,
        metadata={"help": "Number of Medusa heads."},
    )
    medusa_num_layers: int = field(
        default=1,
        metadata={"help": "Number of layers for each Medusa head."},
    )


local_rank = None


def rank0_print(*args):
    if local_rank == 0:
        print(*args)


def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
    """
    Save the model's state dictionary to a specified directory.

    Args:
        trainer (transformers.Trainer): The Hugging Face Trainer object.
        output_dir (str): The directory where the model state dictionary will be saved.
    """
    state_dict = trainer.model.state_dict()
    if trainer.args.should_save:
        cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
        del state_dict
        trainer._save(output_dir, state_dict=cpu_state_dict)  # noqa


class SupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning.

    Args:
        dataset (str): One of the datasets names in a CalibrationDataset subclass.
        tokenizer (transformers.PreTrainedTokenizer): The tokenizer to use for data preprocessing.
    """

    def __init__(self, dataset, tokenizer: transformers.PreTrainedTokenizer):
        super(SupervisedDataset, self).__init__()

        rank0_print("Formatting inputs...")
        dataset_classes = CalibrationDataset.__subclasses__()
        for dataset_class in dataset_classes:
            if dataset_class.dataset == dataset:
                dataset = dataset_class(num_samples=int(1e6), seqlen=tokenizer.model_max_length, tokenizer=tokenizer)
                break
        tokenized = dataset.tokenize_dataset()
        self.input_ids = torch.tensor([data["input_ids"] for data in tokenized], dtype=torch.long)
        self.attention_mask = torch.tensor([data["attention_mask"] for data in tokenized], dtype=torch.long)

    def __len__(self):
        return self.input_ids.shape[0]

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        return dict(
            input_ids=self.input_ids[i],
            labels=self.input_ids[i],
            attention_mask=self.attention_mask[i],
        )


def train():
    global local_rank

    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments)
    )
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    local_rank = training_args.local_rank

    config = transformers.AutoConfig.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
    )
    config.use_cache = False

    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
    )

    # Load model and tokenizer
    try:  # Try loading with FA2
        model = transformers.AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            cache_dir=training_args.cache_dir,
            low_cpu_mem_usage=True,
            torch_dtype=torch.bfloat16,
            quantization_config=quantization_config if model_args.load_in_4bit else None,
            load_in_4bit=model_args.load_in_4bit,
            load_in_8bit=model_args.load_in_8bit,
            attn_implementation="flash_attention_2",
        )
    except:
        model = transformers.AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            cache_dir=training_args.cache_dir,
            low_cpu_mem_usage=True,
            torch_dtype=torch.bfloat16,
            quantization_config=quantization_config if model_args.load_in_4bit else None,
            load_in_4bit=model_args.load_in_4bit,
            load_in_8bit=model_args.load_in_8bit,
        )

    # Freeze the base model
    for param in model.base_model.parameters():
        param.requires_grad = False

    # Add Medusa heads
    medusa_lm_head = MedusaModel(
        model,
        medusa_num_heads=training_args.medusa_num_heads,
        medusa_num_layers=training_args.medusa_num_layers,
        base_model_name_or_path=model_args.model_name_or_path,
    )

    # Format output dir
    training_args.output_dir = f"{training_args.output_dir}_medusa_{model_args.model_name_or_path.split('/')[-1]}"

    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        model_max_length=training_args.model_max_length,
        padding_side="right",
        use_fast=False,
    )
    tokenizer.pad_token = tokenizer.unk_token

    # Load data
    data_module = {"train_dataset": SupervisedDataset(data_args.dataset, tokenizer), "eval_dataset": None}


    # Generate Medusa config for pushing to HF hub
    medusa_config = MedusaConfig(
        medusa_num_heads=training_args.medusa_num_heads,
        medusa_num_layers=training_args.medusa_num_layers,
        base_model_name_or_path=model_args.model_name_or_path,
    )

    # Save Medusa config
    medusa_config.save_pretrained(training_args.output_dir)

    # Start trainner
    trainer = CustomizedTrainer(
        model=medusa_lm_head, tokenizer=tokenizer, args=training_args, **data_module
    )

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    model.config.use_cache = True

    # Save MedusaHead seperately
    if hasattr(medusa_lm_head, "module"):
        lm_head = medusa_lm_head.module.medusa_head
    else:
        lm_head = medusa_lm_head.medusa_head

    # Save Medusa heads
    torch.save(
        lm_head.state_dict(),
        os.path.join(training_args.output_dir, "medusa_lm_head.pt"),
    )


if __name__ == "__main__":
    train()