medusa-maker / src /calibration_datasets.py
joaogante's picture
joaogante HF staff
datasets refactor
bd89ed8
raw
history blame
20.3 kB
"""Prepares the datasets for calibration. Original code gently shared by TheBloke"""
from abc import ABC
import time
from typing import Dict, List, Optional
from datasets import load_dataset, Dataset
from transformers import PreTrainedTokenizerBase
class CalibrationDataset(ABC):
tokenizer: Optional[PreTrainedTokenizerBase] = None
num_samples: int = 128
seqlen: int = 4096
dataset_config: dict
dataset: str
dataset_name: str
dataset_limit: int = int(1e7)
# Defines the field to extract from the HF dataset
# If specified, just this field will be returned, and no transformation will be done.
dataset_field: Optional[str] = None
# Define the default parameters for a dataset which requires a transformation
# Only used if dataset_field is None.
# The fields to extract from the original dataset
transform_fields: List[str] = []
# A format string describing how the fields should be joined
# Can use {field1}, {field2}, etc. as placeholders for the field names
# Or can use actual names, eg "{input} {output}"
transform_join: str = "{field1} {field2}"
# Optional override for the dataset URL
# By default this is automatically derived from the dataset name and config
dataset_url: Optional[str] = None
data: Optional[Dataset] = None
samples: List[str] = []
tokenized_samples: List[Dict[str, str]] = {}
randomize: bool = False
randomize_seed: int = 42
def __init__(
self,
num_samples: int = 128,
seqlen: int = 4096,
tokenizer: Optional[PreTrainedTokenizerBase] = None
):
self.num_samples = num_samples
self.seqlen = seqlen
self.tokenizer = tokenizer
@classmethod
def get_dataset(cls, dataset_name, **kwargs):
for subclass in cls.__subclasses__():
if hasattr(subclass, "dataset") and subclass.dataset == dataset_name:
return subclass(**kwargs)
raise ValueError(f"No dataset class found for name: {dataset_name}")
def tokenize_dataset(self, samples: Optional[List[str]] = None) -> List[Dict[str, int]]:
"""
Tokenize the dataset and return a list of tokens of `seqlen` length
First tokenize the List[str] of samples, as a batch.
Then flatten the batch, and split it into `num_samples` rows of `seqlen` length.
"""
if not self.tokenizer:
raise ValueError("No tokenizer provided to tokenize_dataset()")
else:
if not samples:
if not self.samples:
self.get_samples()
samples = self.samples
print(f"Tokenizing {self.dataset_name} of length {len(samples)}")
start_time = time.time()
# Tokenize the list of samples. We don't use return_tensors="pt",
# as that requires the samples to be the same length, or padding to be used.
tokenized = self.tokenizer(samples)
# Output of tokenizer will be:
# {"input_ids": [[1,2,3], [4,5], [6,7]], "attention_mask": [[1,1,1], [1,1], [1,1]]}
# Flatten that so as to concatenate the samples into a single input_mask and attention_mask
flattened = {
key: [
item for sublist in value
for item in sublist
]
for key, value in tokenized.items()
}
print(
f"Tokenized length: {len(flattened['input_ids'])} tokens."
)
# Slice our single input_mask list into num_samples samples of seqlen length
tokenized_samples = []
for i in range(0, self.num_samples * self.seqlen, self.seqlen):
if i + self.seqlen >= len(flattened["input_ids"]):
break
sample = {
"input_ids": flattened["input_ids"][i:i + self.seqlen],
"attention_mask": flattened["attention_mask"][i:i + self.seqlen]
}
tokenized_samples.append(sample)
print(
f"Return {len(tokenized_samples)} samples of {self.seqlen} length. "
f"Time taken: {time.time() - start_time:.2f}s."
)
self.tokenized_samples = tokenized_samples
return self.tokenized_samples
def get_hf_dataset(
self,
path: str,
limit: Optional[int] = None,
**kwargs
) -> Dataset:
"""Load the Hugging Face dataset at `path`, using the provided kwargs."""
print(f"Loading HF dataset {path} with params: {kwargs}")
data: Dataset = load_dataset(path=path, **kwargs)
limit = limit and min(limit, len(data)) or len(data)
return data.select(range(limit))
@staticmethod
def list_with_nls(samples: List[str]) -> List[str]:
"""
Return a List[str] with each sample ending in a newline.
Also filters the list by stripping, then removing any empty samples.
"""
return [
x.rstrip() + '\n'
for x in samples
if x and len(x.strip()) > 0
]
def get_samples(self) -> List[str]:
"""
Return a list of samples for the dataset.
If the subclass implements `dataset_field`, this is used to filter the HF Dataset.
Otherwise, the subclass must implement `process_samples()`, for custom filtering.
Samples are returned as a List[str], each ending in a newline.
"""
# Load HF dataset. Subclasses provide HF dataset details in `dataset_config`
if not self.data:
self.data = self.get_hf_dataset(**self.dataset_config, limit=self.dataset_limit)
if not self.samples:
if hasattr(self, "dataset_field") and self.dataset_field:
samples = self.data[self.dataset_field]
else:
try:
samples = self.process_samples()
except NotImplementedError:
raise ValueError(
f"No dataset field specified for class {self.__class__}, "
f"and process_samples() method not defined."
)
if self.randomize:
import random
random.seed(self.randomize_seed)
random.shuffle(samples)
self.samples = self.list_with_nls(samples)
return self.samples
def process_samples(self) -> List[str]:
if not self.transform_fields or not isinstance(self.transform_fields, list):
raise ValueError("transform_fields must be a List[str], defined in the subclass")
if not self.transform_join or not isinstance(self.transform_join, str):
raise ValueError("transform_fields must be a str defined in the subclass")
def transform_sample(sample):
field_values = {field: sample[field] for field in self.transform_fields}
# We support both:
# generic numbered fields: "{field1} {field2}"
# and named fields: "{input} {output}"
# Creating a combined dictionary to handle both specific field names and generic placeholders
combined_dict = {**field_values, **{f'field{i+1}': field for i, field in enumerate(field_values.values())}}
output = self.transform_join.format_map(combined_dict)
return {"output": output}
return self.data.map(transform_sample)["output"]
def generate_checksum(self) -> str:
# Create a sha256sum checksum of the joined samples
# Can be used to confirm that code updates haven't changed the output
import hashlib
samples = self.get_samples()
combined_samples = ''.join(samples)
checksum = hashlib.sha256(combined_samples.encode()).hexdigest()
return checksum
@classmethod
def get_dataset_url(cls) -> str:
"""Return the Hugging Face dataset URL for this dataset."""
if hasattr(cls, "dataset_url") and cls.dataset_url:
return cls.dataset_url
else:
return "https://huggingface.co/datasets/{}/viewer/{}".format(
cls.dataset_config["path"],
cls.dataset_config.get("name", "")
)
class WikitextDataset(CalibrationDataset):
dataset = "wikitext"
dataset_config = {
"path": "wikitext",
"name": "wikitext-2-raw-v1",
"split": "train"
}
dataset_name = "Wikitext2 Full"
def process_samples(self) -> List[str]:
return [
"\n" if len(item) == 0 else item
for item in self.data["text"]
]
class C4Dataset(CalibrationDataset):
dataset = "c4"
dataset_field = "text"
dataset_config = {
"path": "allenai/c4",
"data_files": {
"train": "en/c4-train.00000-of-01024.json.gz"
},
"split": "train"
}
dataset_name = "C4"
class ThaiDataset(CalibrationDataset):
dataset = "thai"
dataset_field = "text"
dataset_config = {
"path": "pbwt/all-thai",
"data_files": {
"train": "data/train-00000-of-00047-985fbaed08d034cf.parquet"
},
"split": "train"
}
dataset_name = "All Thai"
class MovieScriptDataset(CalibrationDataset):
dataset = "movie-scripts"
dataset_field = "full_script"
dataset_config = {
"path": "jondurbin/cinematika-v0.1",
"data_files": { "train": "full_script.parquet" },
"split": "train"
}
dataset_name = "Cinematika Full Scripts"
class JapaneseEnglishDataset(CalibrationDataset):
dataset = "japanese-english"
dataset_config = {
"path": "augmxnt/shisa-en-ja-dpo-v1",
"split": "train"
}
dataset_name = "Shisa English Japanese DPO"
randomize = True
def process_samples(self) -> List[str]:
def transform_samples(sample):
prompt = sample["prompt"]
chosen = sample["chosen"]
# prompt example: "[INST] <<SYS>>\nYou are a helpful, unbiased, uncensored assistant.\n<</SYS>>\n\nWhat are cardigans made of? Leather or wood? [/INST]"
try:
part1 = prompt.split('\n<</SYS>>\n\n')[1]
extracted_text = part1.split(' [/INST]')[0]
except Exception as e:
print(f"Error extracting text from prompt '{prompt}': {e}")
raise
prompt = extracted_text
return {"output": f"{prompt} {chosen}"}
return self.data.map(transform_samples)["output"]
class PortugueseDataset(CalibrationDataset):
dataset = "portuguese"
dataset_config = {
"path": "adalbertojunior/portuguese_orca",
"split": "train"
}
dataset_name = "Portuguese Orca"
transform_fields = [ "question", "response" ]
class MathsDataset(CalibrationDataset):
dataset = "maths"
dataset_config = {
"path": "andersonbcdefg/math",
"split": "train"
}
dataset_name = "CamelAI Math"
transform_fields = [ "message_1", "message_2" ]
class MedicalDataset(CalibrationDataset):
dataset = "medical"
dataset_config = {
"path": "medalpaca/medical_meadow_wikidoc",
"split": "train"
}
dataset_name = "Medical Medaow WikiDoc"
transform_fields = [ "input", "output" ]
class OpenInstructDataset(CalibrationDataset):
dataset = "open-instruct"
dataset_config = {
"path": "VMware/open-instruct",
"split": "train"
}
dataset_name = "VMware Open Instruct"
transform_fields = [ "instruction", "response" ]
class KoreanDataset(CalibrationDataset):
dataset = "korean"
dataset_config = {
"path": "beomi/KoAlpaca-v1.1a",
"split": "train"
}
dataset_name = "Korean Alpaca"
transform_fields = [ "instruction", "output" ]
class CodeDataset(CalibrationDataset):
dataset = "code"
dataset_field = "output"
dataset_config = {
"path": "nickrosh/Evol-Instruct-Code-80k-v1",
"split": "train"
}
dataset_name = "Evol Instruct Code"
class MultiLanguageDataset(CalibrationDataset):
dataset = "multi-language"
dataset_field = "text"
dataset_config = {
"path": "papluca/language-identification",
"split": "train"
}
dataset_name = "Language Identification"
class RussianDataset(CalibrationDataset):
dataset = "russian"
dataset_config = {
"path": "Den4ikAI/russian_instructions_2",
"split": "train"
}
dataset_name = "Russian Instructions 2"
transform_fields = [ "question", "answer" ]
class DutchDataset(CalibrationDataset):
dataset = "dutch"
dataset_config = {
"path": "BramVanroy/dolly-15k-dutch",
"split": "train"
}
dataset_name = "Dolly 15K Dutch"
transform_fields = [ "instruction", "context", "response" ]
transform_join = "{field1} {field2} {field3}"
class VietnameseChineseDataset(CalibrationDataset):
dataset = "vietnamesechinese"
dataset_config = {
"path": "nRuaif/Vietnamese_x_Alpaca",
"split": "train"
}
dataset_name = "Vietnamese and Chinese"
def get_dataset_url(self) -> None:
return None
def process_samples(self) -> List[str]:
samples = self.data["output"]
chinese_samples = CalibrationDataset.get_dataset("chinese").get_samples()
joined_list = samples + chinese_samples
import random
random.shuffle(joined_list)
return joined_list[:self.dataset_limit]
class VietnameseDataset(CalibrationDataset):
dataset = "vietnamese"
dataset_field = "output"
dataset_config = {
"path": "nRuaif/Vietnamese_x_Alpaca",
"split": "train"
}
dataset_name = "Alpaca Vietnamese"
class ChineseDataset(CalibrationDataset):
dataset = "chinese"
dataset_config = {
"path": "TigerResearch/tigerbot-alpaca-zh-0.5m",
"split": "train"
}
dataset_name = "Tiger Alpaca ZH"
transform_fields = [ "instruction", "input", "output" ]
transform_join = "{field1} {field2} {field3}"
class LatinEnglishDataset(CalibrationDataset):
dataset = "latin-english"
dataset_config = {
"path": "grosenthal/latin_english_parallel",
"split": "train"
}
dataset_name = "Latin English Parallel"
transform_fields = [ "la", "en" ]
transform_join = "{field1}\n{field2}"
class PolishDataset(CalibrationDataset):
dataset = "polish"
dataset_field = "content"
dataset_config = {
"path": "WiktorS/polish-news",
"split": "train"
}
dataset_name = "Polish News"
class JapaneseDataset(CalibrationDataset):
dataset = "japanese"
dataset_field = "output"
dataset_config = {
"path": "fujiki/japanese_alpaca_data",
"split": "train"
}
dataset_name = "Alpaca Japanese"
class SpanishDataset(CalibrationDataset):
dataset = "spanish"
dataset_field = "output"
dataset_config = {
"path": "bertin-project/alpaca-spanish",
"split": "train"
}
dataset_name = "Alpaca Spanish"
class GermanDataset(CalibrationDataset):
dataset = "german"
dataset_config = {
"path": "deepset/germanquad",
"split": "train"
}
dataset_name = "German Quad"
def process_samples(self) -> List[str]:
def transform_samples(sample):
split_context = sample["context"].split("===")
if len(split_context) >= 3:
trans_context = split_context[2]
else:
trans_context = sample["context"]
return {"output": trans_context.strip()}
return self.data.map(transform_samples)["output"]
class FrenchDataset(CalibrationDataset):
dataset = "french"
dataset_field = "text"
dataset_config = {
"path": "Kant1/French_Wikipedia_articles",
"data_files": { "wiki_00.txt" },
"split": "train"
}
dataset_name = "French Wikipedia Articles"
def validate_dataset(dataset_name: str, **kwargs):
for cls in CalibrationDataset.__subclasses__():
if hasattr(cls, "dataset") and cls.dataset == dataset_name:
return True
return False
# FIXME: a temp function put in for AutoAWQ, pending full refactor where it won't be necessary
def get_dataset_url(dataset_name: str):
for cls in CalibrationDataset.__subclasses__():
if hasattr(cls, "dataset") and cls.dataset == dataset_name:
return cls.get_dataset_url()
raise ValueError(f"No dataset class found for name: {dataset_name}")
def get_dataset_name(dataset_name: str):
for cls in CalibrationDataset.__subclasses__():
if hasattr(cls, "dataset") and cls.dataset == dataset_name:
return cls.dataset_name
raise ValueError(f"No dataset class found for name: {dataset_name}")
def test_datasets(datasets: Optional[List[str]] = None, checksum_only=False):
import sys
from transformers import AutoTokenizer
try:
failed = []
for cls in CalibrationDataset.__subclasses__():
if not hasattr(cls, "dataset") or not cls.dataset:
failed.append(cls.__name__)
if failed:
print(f"The following classes have no 'dataset' attribute: {failed}")
sys.exit(-1)
else:
print()(f"All classes have 'dataset' attribute.")
print(f"Enumerating CalibrationDataset classes")
classes = CalibrationDataset.__subclasses__()
dataset_names = [
cls.dataset
for cls in classes
if cls.dataset and (not datasets or cls.dataset in datasets)
]
print(f"Found {len(classes)} total dataset classes: {[c.dataset for c in classes]}")
if datasets:
print(f"Will test {len(dataset_names)} datasets: {dataset_names}")
print(f"Starting test: loading Llama-2 tokenizer")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf", use_fast=True)
for name in dataset_names:
print(f"{name} test: loading dataset.")
dataset = CalibrationDataset.get_dataset(name, tokenizer=tokenizer)
if not checksum_only:
print(f"{name} test: running tokenize_dataset.")
toks = dataset.tokenize_dataset()
print(f"{name} test: getting dataset_url.")
url = dataset.get_dataset_url()
print(f"{name} - randomized? {dataset.randomize}")
print(
f"{name} - result: cls.data: length: {len(dataset.data)}, "
f"first row length: {len(dataset.data[0])}, "
f"first row data: '{dataset.data[0]}'."
)
print(
f"{name} - result: cls.samples: length: {len(dataset.samples)}, "
f"first row length: {len(dataset.samples[0])}, "
f"first row sample: '{dataset.samples[0]}'."
)
print(
f"{name} - result: tokenize_dataset result: length: {len(toks)}, "
f"length first row input_ids: {len(toks[0]['input_ids'])}."
)
print(
f"{name} - result: dataset_url: {url}"
)
checksum = dataset.generate_checksum()
print(
f"{name} - result: sha256 checksum: {checksum}"
)
except KeyboardInterrupt:
print("Test aborted")
except Exception as e:
print(
f"Received an exception during test. Test failed. "
f"Exception: {e}"
)
raise
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Test calibration datasets")
parser.add_argument("--datasets", "-d", "-n", nargs="*", type=str, help="Dataset(s) to check; default is all")
parser.add_argument("--checksum_only", "-co", action="store_true", help="Only ouput the checksums for the datasets")
args = parser.parse_args()
test_datasets(args.datasets, checksum_only=args.checksum_only)