import gradio as gr from icevision.all import * from fastai.vision.all import * class_map = ClassMap(['disk']) model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True),num_classes=len(class_map)) state_dict = torch.load('fasterRCNNDisc.pth',map_location=torch.device('cpu')) model.load_state_dict(state_dict) infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()]) def predict(img): img = PILImage.create(img) pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5) return pred_dict['img'] gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(),examples=['image.jpg']).launch(share=False)