Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import gradio as gr | |
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1",torch_dtype=torch.float16, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") | |
def generate(message): | |
text = f"You are an assistant to help people with suicide toughts and their family and friends. Given a sentence you will classify it into three categories: suicide intent, if the sentence belongs that has a suicide intent or have suicidal toughts; information, if the sentence belongs to a person that is looking for information about suicide or is concern about some relative; or depression, if the sentence belongs to a person that is depressed or have negative toughts. Classify with just one word the sentence {message} and give an explanation in Spanish" | |
messages = [ | |
{"role": "user", "content": text}, | |
] | |
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") | |
model_inputs = encodeds.to(device) | |
model.to(device) | |
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) | |
decoded = tokenizer.batch_decode(generated_ids) | |
print(decoded[0][decoded[0].rfind(["[/INST]"])+6:]) | |
example1 = "No quiero seguir viviendo ¿qué puedo hacer?." | |
example2 = "¿Cómo puedo ayudar a un amigo que quiere quitarse la vida?" | |
iface = gr.Interface(fn=information_or_intent,inputs="text", outputs="text",examples=[example1,example2]).launch(share=False) |