Spaces:
Running
Running
import tflite_runtime.interpreter as tflite | |
import tflite_runtime | |
import numpy as np | |
ROWS_PER_FRAME=543 | |
def load_relevant_data_subset(df): | |
data_columns = ['x', 'y', 'z'] | |
data=df[data_columns] | |
n_frames = int(len(data) / ROWS_PER_FRAME)#单个文件的总帧数 | |
data = data.values.reshape(n_frames, ROWS_PER_FRAME, len(data_columns)) | |
return data.astype(np.float32) | |
def mark_pred(model_path_1,aa): | |
interpreter = tflite.Interpreter(model_path_1) | |
found_signatures = list(interpreter.get_signature_list().keys()) | |
prediction_fn = interpreter.get_signature_runner("serving_default") | |
output_1 = prediction_fn(inputs=aa) | |
return output_1 | |
def softmax(x, axis=None): | |
x_exp = np.exp(x - np.max(x, axis=axis, keepdims=True)) | |
return x_exp / np.sum(x_exp, axis=axis, keepdims=True) | |