import tflite_runtime.interpreter as tflite import tflite_runtime import numpy as np ROWS_PER_FRAME=543 def load_relevant_data_subset(df): data_columns = ['x', 'y', 'z'] data=df[data_columns] n_frames = int(len(data) / ROWS_PER_FRAME)#单个文件的总帧数 data = data.values.reshape(n_frames, ROWS_PER_FRAME, len(data_columns)) return data.astype(np.float32) def mark_pred(model_path_1,aa): interpreter = tflite.Interpreter(model_path_1) found_signatures = list(interpreter.get_signature_list().keys()) prediction_fn = interpreter.get_signature_runner("serving_default") output_1 = prediction_fn(inputs=aa) return output_1 def softmax(x, axis=None): x_exp = np.exp(x - np.max(x, axis=axis, keepdims=True)) return x_exp / np.sum(x_exp, axis=axis, keepdims=True)