### 1. Imports and class names setup ### import gradio as gr import os import torch from model import create_effnetb2_model,create_vit_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names with open("class_names_chinese.txt", "r") as f: # reading them in from class_names.txt class_names = [food_name.strip() for food_name in f.readlines()] ### 2. Model and transforms preparation ### # Create model effnetb2, effnetb2_transforms = create_effnetb2_model( num_classes=101, # could also use len(class_names) ) vit, vit_transforms = create_vit_model( num_classes=101, # could also use len(class_names) ) # Load saved weights effnetb2.load_state_dict( torch.load( f="pretrained_effnetb2_feature_extractor_food101_100_percent.pth", map_location=torch.device("cpu"), # load to CPU ) ) vit.load_state_dict( torch.load( f="pretrained_vit_feature_extractor_food101_100_percent.pth", map_location=torch.device("cpu"), # load to CPU ) ) ### 3. Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img_effnetb2 = effnetb2_transforms(img).unsqueeze(0) img_vit = vit_transforms(img).unsqueeze(0) # Put model into evaluation mode and turn on inference mode effnetb2.eval() vit.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax((effnetb2(img_effnetb2)+vit(img_vit))/2, dim=1) #with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities #pred_probs_vit = torch.softmax(vit(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article strings #title = "FoodVision Big 🍔👁" description = "训练集使用的food101数据集,其中包含101种不同类型食品,\ [原项目](https://www.learnpytorch.io/09_pytorch_model_deployment/)在测试集上的精度大约为60%,\ 我这边主要简单的替换了其中的分类模型,使得精度提到80%以上,同时也进了中文化处理,\ 注意此分类器只包含了101个品种的食物,如披萨,饺子,炸薯条,炒饭,巧克力慕斯等等,[详细品类详见此处](https://huggingface.co/spaces/john000z/foodvision_assum/blob/main/class_names_chinese.txt)." article = "Created at [09. PyTorch Model Deployment]." title = "食品分类器 🍔👁" # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] # Create Gradio interface demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=5, label="预测结果"), #Predictions gr.Number(label="预测消耗时间(s)"), #Prediction time (s) ], examples=example_list, title=title, description=description, article=article, ) # Launch the app! demo.launch()