|
import hashlib |
|
import os |
|
import urllib |
|
import warnings |
|
from typing import Any, Union, List |
|
|
|
import torch |
|
from PIL import Image |
|
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize |
|
from tqdm import tqdm |
|
|
|
from .model import build_model |
|
from .simple_tokenizer import SimpleTokenizer as _Tokenizer |
|
|
|
try: |
|
from torchvision.transforms import InterpolationMode |
|
BICUBIC = InterpolationMode.BICUBIC |
|
except ImportError: |
|
BICUBIC = Image.BICUBIC |
|
|
|
|
|
|
|
__all__ = ["available_models", "load", "tokenize"] |
|
_tokenizer = _Tokenizer() |
|
|
|
_MODELS = { |
|
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", |
|
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", |
|
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", |
|
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", |
|
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", |
|
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", |
|
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", |
|
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", |
|
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", |
|
} |
|
|
|
|
|
def _download(url: str, root: str): |
|
os.makedirs(root, exist_ok=True) |
|
filename = os.path.basename(url) |
|
|
|
expected_sha256 = url.split("/")[-2] |
|
download_target = os.path.join(root, filename) |
|
|
|
if os.path.exists(download_target) and not os.path.isfile(download_target): |
|
raise RuntimeError(f"{download_target} exists and is not a regular file") |
|
|
|
if os.path.isfile(download_target): |
|
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: |
|
return download_target |
|
else: |
|
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") |
|
|
|
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: |
|
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: |
|
while True: |
|
buffer = source.read(8192) |
|
if not buffer: |
|
break |
|
|
|
output.write(buffer) |
|
loop.update(len(buffer)) |
|
|
|
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: |
|
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match") |
|
|
|
return download_target |
|
|
|
|
|
def _convert_image_to_rgb(image): |
|
return image.convert("RGB") |
|
|
|
|
|
def _transform(n_px): |
|
return Compose([ |
|
Resize(n_px, interpolation=BICUBIC), |
|
CenterCrop(n_px), |
|
_convert_image_to_rgb, |
|
ToTensor(), |
|
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), |
|
]) |
|
|
|
|
|
def available_models() -> List[str]: |
|
"""Returns the names of available CLIP models""" |
|
return list(_MODELS.keys()) |
|
|
|
|
|
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None): |
|
"""Load a CLIP model |
|
|
|
Parameters |
|
---------- |
|
name : str |
|
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict |
|
|
|
device : Union[str, torch.device] |
|
The device to put the loaded model |
|
|
|
jit : bool |
|
Whether to load the optimized JIT model or more hackable non-JIT model (default). |
|
|
|
download_root: str |
|
path to download the model files; by default, it uses "~/.cache/clip" |
|
|
|
Returns |
|
------- |
|
model : torch.nn.Module |
|
The CLIP model |
|
|
|
preprocess : Callable[[PIL.Image], torch.Tensor] |
|
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input |
|
""" |
|
if name in _MODELS: |
|
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) |
|
elif os.path.isfile(name): |
|
model_path = name |
|
else: |
|
raise RuntimeError(f"Model {name} not found; available models = {available_models()}") |
|
|
|
with open(model_path, 'rb') as opened_file: |
|
try: |
|
|
|
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() |
|
state_dict = None |
|
except RuntimeError: |
|
|
|
if jit: |
|
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") |
|
jit = False |
|
state_dict = torch.load(opened_file, map_location="cpu") |
|
|
|
if not jit: |
|
model = build_model(state_dict or model.state_dict()).to(device) |
|
if str(device) == "cpu": |
|
model.float() |
|
return model, _transform(model.visual.input_resolution) |
|
|
|
|
|
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) |
|
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] |
|
|
|
def _node_get(node: torch._C.Node, key: str): |
|
"""Gets attributes of a node which is polymorphic over return type. |
|
|
|
From https://github.com/pytorch/pytorch/pull/82628 |
|
""" |
|
sel = node.kindOf(key) |
|
return getattr(node, sel)(key) |
|
|
|
def patch_device(module): |
|
try: |
|
graphs = [module.graph] if hasattr(module, "graph") else [] |
|
except RuntimeError: |
|
graphs = [] |
|
|
|
if hasattr(module, "forward1"): |
|
graphs.append(module.forward1.graph) |
|
|
|
for graph in graphs: |
|
for node in graph.findAllNodes("prim::Constant"): |
|
if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"): |
|
node.copyAttributes(device_node) |
|
|
|
model.apply(patch_device) |
|
patch_device(model.encode_image) |
|
patch_device(model.encode_text) |
|
|
|
|
|
if str(device) == "cpu": |
|
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) |
|
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] |
|
float_node = float_input.node() |
|
|
|
def patch_float(module): |
|
try: |
|
graphs = [module.graph] if hasattr(module, "graph") else [] |
|
except RuntimeError: |
|
graphs = [] |
|
|
|
if hasattr(module, "forward1"): |
|
graphs.append(module.forward1.graph) |
|
|
|
for graph in graphs: |
|
for node in graph.findAllNodes("aten::to"): |
|
inputs = list(node.inputs()) |
|
for i in [1, 2]: |
|
if _node_get(inputs[i].node(), "value") == 5: |
|
inputs[i].node().copyAttributes(float_node) |
|
|
|
model.apply(patch_float) |
|
patch_float(model.encode_image) |
|
patch_float(model.encode_text) |
|
|
|
model.float() |
|
|
|
return model, _transform(model.input_resolution.item()) |
|
|
|
|
|
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]: |
|
""" |
|
Returns the tokenized representation of given input string(s) |
|
|
|
Parameters |
|
---------- |
|
texts : Union[str, List[str]] |
|
An input string or a list of input strings to tokenize |
|
|
|
context_length : int |
|
The context length to use; all CLIP models use 77 as the context length |
|
|
|
truncate: bool |
|
Whether to truncate the text in case its encoding is longer than the context length |
|
|
|
Returns |
|
------- |
|
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. |
|
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. |
|
""" |
|
if isinstance(texts, str): |
|
texts = [texts] |
|
|
|
sot_token = _tokenizer.encoder["<|startoftext|>"] |
|
eot_token = _tokenizer.encoder["<|endoftext|>"] |
|
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] |
|
|
|
|
|
|
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) |
|
|
|
for i, tokens in enumerate(all_tokens): |
|
if len(tokens) > context_length: |
|
if truncate: |
|
tokens = tokens[:context_length] |
|
tokens[-1] = eot_token |
|
else: |
|
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") |
|
result[i, :len(tokens)] = torch.tensor(tokens) |
|
|
|
return result |
|
|