Spaces:
Runtime error
Runtime error
Tran Vuong Quoc Dat
commited on
Commit
·
b2f2b4c
1
Parent(s):
87f63ac
add model and interface
Browse files- app.py +151 -0
- data_loader_cache.py +385 -0
- demo_images/word_000000192.png +0 -0
- demo_images/word_000000206.png +0 -0
- demo_images/word_000004593.png +0 -0
- demo_images/word_000005357.png +0 -0
- demo_images/word_000005361.png +0 -0
- models/__init__.py +1 -0
- models/__pycache__/__init__.cpython-37.pyc +0 -0
- models/__pycache__/__init__.cpython-39.pyc +0 -0
- models/__pycache__/isnet.cpython-39.pyc +0 -0
- models/__pycache__/u2netfast.cpython-37.pyc +0 -0
- models/isnet.py +610 -0
- trained_models/gpu_itr_24375_traLoss_1.0196_traTarLoss_0.0403_valLoss_0.8077_valTarLoss_0.0391_maxF1_0.9133_mae_0.0237_time_0.012338.pth +3 -0
app.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from torch.autograd import Variable
|
8 |
+
from torchvision import transforms
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import gdown
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import warnings
|
13 |
+
warnings.filterwarnings("ignore")
|
14 |
+
|
15 |
+
|
16 |
+
# project imports
|
17 |
+
from data_loader_cache import normalize, im_reader, im_preprocess
|
18 |
+
from models import *
|
19 |
+
|
20 |
+
#Helpers
|
21 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
22 |
+
|
23 |
+
class GOSNormalize(object):
|
24 |
+
'''
|
25 |
+
Normalize the Image using torch.transforms
|
26 |
+
'''
|
27 |
+
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
|
28 |
+
self.mean = mean
|
29 |
+
self.std = std
|
30 |
+
|
31 |
+
def __call__(self,image):
|
32 |
+
image = normalize(image,self.mean,self.std)
|
33 |
+
return image
|
34 |
+
|
35 |
+
|
36 |
+
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
|
37 |
+
|
38 |
+
def load_image(im_path, hypar):
|
39 |
+
im = im_reader(im_path)
|
40 |
+
im, im_shp = im_preprocess(im, hypar["cache_size"])
|
41 |
+
im = torch.divide(im,255.0)
|
42 |
+
shape = torch.from_numpy(np.array(im_shp))
|
43 |
+
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
|
44 |
+
|
45 |
+
|
46 |
+
def build_model(hypar,device):
|
47 |
+
net = hypar["model"]#GOSNETINC(3,1)
|
48 |
+
|
49 |
+
# convert to half precision
|
50 |
+
if(hypar["model_digit"]=="half"):
|
51 |
+
net.half()
|
52 |
+
for layer in net.modules():
|
53 |
+
if isinstance(layer, nn.BatchNorm2d):
|
54 |
+
layer.float()
|
55 |
+
|
56 |
+
net.to(device)
|
57 |
+
|
58 |
+
if(hypar["restore_model"]!=""):
|
59 |
+
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
|
60 |
+
net.to(device)
|
61 |
+
net.eval()
|
62 |
+
return net
|
63 |
+
|
64 |
+
|
65 |
+
def predict(net, inputs_val, shapes_val, hypar, device):
|
66 |
+
'''
|
67 |
+
Given an Image, predict the mask
|
68 |
+
'''
|
69 |
+
net.eval()
|
70 |
+
|
71 |
+
if(hypar["model_digit"]=="full"):
|
72 |
+
inputs_val = inputs_val.type(torch.FloatTensor)
|
73 |
+
else:
|
74 |
+
inputs_val = inputs_val.type(torch.HalfTensor)
|
75 |
+
|
76 |
+
|
77 |
+
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
|
78 |
+
|
79 |
+
ds_val = net(inputs_val_v)[0] # list of 6 results
|
80 |
+
|
81 |
+
pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
|
82 |
+
|
83 |
+
## recover the prediction spatial size to the orignal image size
|
84 |
+
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
|
85 |
+
|
86 |
+
ma = torch.max(pred_val)
|
87 |
+
mi = torch.min(pred_val)
|
88 |
+
pred_val = (pred_val-mi)/(ma-mi) # max = 1
|
89 |
+
|
90 |
+
if device == 'cuda': torch.cuda.empty_cache()
|
91 |
+
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
|
92 |
+
|
93 |
+
# Set Parameters
|
94 |
+
hypar = {} # paramters for inferencing
|
95 |
+
|
96 |
+
|
97 |
+
hypar["model_path"] =r"trained_models" ## load trained weights from this path
|
98 |
+
hypar["restore_model"] = "gpu_itr_24375_traLoss_1.0196_traTarLoss_0.0403_valLoss_0.8077_valTarLoss_0.0391_maxF1_0.9133_mae_0.0237_time_0.012338.pth" ## name of the to-be-loaded weights
|
99 |
+
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
|
100 |
+
|
101 |
+
## choose floating point accuracy --
|
102 |
+
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
|
103 |
+
hypar["seed"] = 0
|
104 |
+
|
105 |
+
hypar["cache_size"] = [384, 384] ## cached input spatial resolution, can be configured into different size
|
106 |
+
|
107 |
+
## data augmentation parameters ---
|
108 |
+
hypar["input_size"] = [384, 384] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
|
109 |
+
hypar["crop_size"] = [384, 384] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
|
110 |
+
|
111 |
+
hypar["model"] = ISNetDIS()
|
112 |
+
|
113 |
+
# Build Model
|
114 |
+
net = build_model(hypar, device)
|
115 |
+
|
116 |
+
|
117 |
+
# Change your inference function to accept file path
|
118 |
+
def inference(image_path: str):
|
119 |
+
image_tensor, orig_size = load_image(image_path, hypar)
|
120 |
+
mask = predict(net, image_tensor, orig_size, hypar, device)
|
121 |
+
|
122 |
+
pil_mask = Image.fromarray(mask).convert("L")
|
123 |
+
im_rgb = Image.open(image_path).convert("RGB")
|
124 |
+
|
125 |
+
im_rgba = im_rgb.copy()
|
126 |
+
im_rgba.putalpha(pil_mask)
|
127 |
+
|
128 |
+
return [np.array(im_rgba), np.array(pil_mask)]
|
129 |
+
|
130 |
+
|
131 |
+
title = "Highly Accurate Dichotomous Image Segmentation"
|
132 |
+
description = "This is an unofficial demo for DIS, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.<br>GitHub: https://github.com/tuanlda78202/cvps23)"
|
133 |
+
article = "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_public' alt='visitor badge'></center></div>"
|
134 |
+
|
135 |
+
# Change gr.Interface call
|
136 |
+
interface = gr.Interface(
|
137 |
+
fn=inference,
|
138 |
+
inputs=gr.inputs.Image(type='filepath'),
|
139 |
+
outputs=[gr.outputs.Image(type='numpy'), gr.outputs.Image(type='numpy')],
|
140 |
+
examples=[[r'demo_images\word_000000192.png'],
|
141 |
+
[r'demo_images\word_000000206.png'],
|
142 |
+
[r'demo_images\word_000004593.png'],
|
143 |
+
[r'demo_images\word_000005357.png'],
|
144 |
+
[r'demo_images\word_000005361.png']],
|
145 |
+
title=title,
|
146 |
+
description=description,
|
147 |
+
article=article,
|
148 |
+
allow_flagging='never',
|
149 |
+
theme="default",
|
150 |
+
cache_examples=False,
|
151 |
+
).launch(enable_queue=True, debug=True)
|
data_loader_cache.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## data loader
|
2 |
+
## Ackownledgement:
|
3 |
+
## We would like to thank Dr. Ibrahim Almakky (https://scholar.google.co.uk/citations?user=T9MTcK0AAAAJ&hl=en)
|
4 |
+
## for his helps in implementing cache machanism of our DIS dataloader.
|
5 |
+
from __future__ import print_function, division
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import random
|
9 |
+
from copy import deepcopy
|
10 |
+
import json
|
11 |
+
from tqdm import tqdm
|
12 |
+
from skimage import io
|
13 |
+
import os
|
14 |
+
from glob import glob
|
15 |
+
|
16 |
+
import torch
|
17 |
+
from torch.utils.data import Dataset, DataLoader
|
18 |
+
from torchvision import transforms, utils
|
19 |
+
from torchvision.transforms.functional import normalize
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
#### --------------------- DIS dataloader cache ---------------------####
|
23 |
+
|
24 |
+
def get_im_gt_name_dict(datasets, flag='valid'):
|
25 |
+
print("------------------------------", flag, "--------------------------------")
|
26 |
+
name_im_gt_list = []
|
27 |
+
for i in range(len(datasets)):
|
28 |
+
print("--->>>", flag, " dataset ",i,"/",len(datasets)," ",datasets[i]["name"],"<<<---")
|
29 |
+
tmp_im_list, tmp_gt_list = [], []
|
30 |
+
tmp_im_list = glob(datasets[i]["im_dir"]+os.sep+'*'+datasets[i]["im_ext"])
|
31 |
+
|
32 |
+
# img_name_dict[im_dirs[i][0]] = tmp_im_list
|
33 |
+
print('-im-',datasets[i]["name"],datasets[i]["im_dir"], ': ',len(tmp_im_list))
|
34 |
+
|
35 |
+
if(datasets[i]["gt_dir"]==""):
|
36 |
+
print('-gt-', datasets[i]["name"], datasets[i]["gt_dir"], ': ', 'No Ground Truth Found')
|
37 |
+
tmp_gt_list = []
|
38 |
+
else:
|
39 |
+
tmp_gt_list = [datasets[i]["gt_dir"]+os.sep+x.split(os.sep)[-1].split(datasets[i]["im_ext"])[0]+datasets[i]["gt_ext"] for x in tmp_im_list]
|
40 |
+
|
41 |
+
# lbl_name_dict[im_dirs[i][0]] = tmp_gt_list
|
42 |
+
print('-gt-', datasets[i]["name"],datasets[i]["gt_dir"], ': ',len(tmp_gt_list))
|
43 |
+
|
44 |
+
|
45 |
+
if flag=="train": ## combine multiple training sets into one dataset
|
46 |
+
if len(name_im_gt_list)==0:
|
47 |
+
name_im_gt_list.append({"dataset_name":datasets[i]["name"],
|
48 |
+
"im_path":tmp_im_list,
|
49 |
+
"gt_path":tmp_gt_list,
|
50 |
+
"im_ext":datasets[i]["im_ext"],
|
51 |
+
"gt_ext":datasets[i]["gt_ext"],
|
52 |
+
"cache_dir":datasets[i]["cache_dir"]})
|
53 |
+
else:
|
54 |
+
name_im_gt_list[0]["dataset_name"] = name_im_gt_list[0]["dataset_name"] + "_" + datasets[i]["name"]
|
55 |
+
name_im_gt_list[0]["im_path"] = name_im_gt_list[0]["im_path"] + tmp_im_list
|
56 |
+
name_im_gt_list[0]["gt_path"] = name_im_gt_list[0]["gt_path"] + tmp_gt_list
|
57 |
+
if datasets[i]["im_ext"]!=".jpg" or datasets[i]["gt_ext"]!=".png":
|
58 |
+
print("Error: Please make sure all you images and ground truth masks are in jpg and png format respectively !!!")
|
59 |
+
exit()
|
60 |
+
name_im_gt_list[0]["im_ext"] = ".jpg"
|
61 |
+
name_im_gt_list[0]["gt_ext"] = ".png"
|
62 |
+
name_im_gt_list[0]["cache_dir"] = os.sep.join(datasets[i]["cache_dir"].split(os.sep)[0:-1])+os.sep+name_im_gt_list[0]["dataset_name"]
|
63 |
+
else: ## keep different validation or inference datasets as separate ones
|
64 |
+
name_im_gt_list.append({"dataset_name":datasets[i]["name"],
|
65 |
+
"im_path":tmp_im_list,
|
66 |
+
"gt_path":tmp_gt_list,
|
67 |
+
"im_ext":datasets[i]["im_ext"],
|
68 |
+
"gt_ext":datasets[i]["gt_ext"],
|
69 |
+
"cache_dir":datasets[i]["cache_dir"]})
|
70 |
+
|
71 |
+
return name_im_gt_list
|
72 |
+
|
73 |
+
def create_dataloaders(name_im_gt_list, cache_size=[], cache_boost=True, my_transforms=[], batch_size=1, shuffle=False):
|
74 |
+
## model="train": return one dataloader for training
|
75 |
+
## model="valid": return a list of dataloaders for validation or testing
|
76 |
+
|
77 |
+
gos_dataloaders = []
|
78 |
+
gos_datasets = []
|
79 |
+
|
80 |
+
if(len(name_im_gt_list)==0):
|
81 |
+
return gos_dataloaders, gos_datasets
|
82 |
+
|
83 |
+
num_workers_ = 1
|
84 |
+
if(batch_size>1):
|
85 |
+
num_workers_ = 2
|
86 |
+
if(batch_size>4):
|
87 |
+
num_workers_ = 4
|
88 |
+
if(batch_size>8):
|
89 |
+
num_workers_ = 8
|
90 |
+
|
91 |
+
for i in range(0,len(name_im_gt_list)):
|
92 |
+
gos_dataset = GOSDatasetCache([name_im_gt_list[i]],
|
93 |
+
cache_size = cache_size,
|
94 |
+
cache_path = name_im_gt_list[i]["cache_dir"],
|
95 |
+
cache_boost = cache_boost,
|
96 |
+
transform = transforms.Compose(my_transforms))
|
97 |
+
gos_dataloaders.append(DataLoader(gos_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers_))
|
98 |
+
gos_datasets.append(gos_dataset)
|
99 |
+
|
100 |
+
return gos_dataloaders, gos_datasets
|
101 |
+
|
102 |
+
def im_reader(im_path):
|
103 |
+
return io.imread(im_path)
|
104 |
+
|
105 |
+
def im_preprocess(im,size):
|
106 |
+
if len(im.shape) < 3:
|
107 |
+
im = im[:, :, np.newaxis]
|
108 |
+
if im.shape[2] == 1:
|
109 |
+
im = np.repeat(im, 3, axis=2)
|
110 |
+
im_tensor = torch.tensor(im.copy(), dtype=torch.float32)
|
111 |
+
im_tensor = torch.transpose(torch.transpose(im_tensor,1,2),0,1)
|
112 |
+
if(len(size)<2):
|
113 |
+
return im_tensor, im.shape[0:2]
|
114 |
+
else:
|
115 |
+
im_tensor = torch.unsqueeze(im_tensor,0)
|
116 |
+
im_tensor = F.upsample(im_tensor, size, mode="bilinear")
|
117 |
+
im_tensor = torch.squeeze(im_tensor,0)
|
118 |
+
|
119 |
+
return im_tensor.type(torch.uint8), im.shape[0:2]
|
120 |
+
|
121 |
+
def gt_preprocess(gt,size):
|
122 |
+
if len(gt.shape) > 2:
|
123 |
+
gt = gt[:, :, 0]
|
124 |
+
|
125 |
+
gt_tensor = torch.unsqueeze(torch.tensor(gt, dtype=torch.uint8),0)
|
126 |
+
|
127 |
+
if(len(size)<2):
|
128 |
+
return gt_tensor.type(torch.uint8), gt.shape[0:2]
|
129 |
+
else:
|
130 |
+
gt_tensor = torch.unsqueeze(torch.tensor(gt_tensor, dtype=torch.float32),0)
|
131 |
+
gt_tensor = F.upsample(gt_tensor, size, mode="bilinear")
|
132 |
+
gt_tensor = torch.squeeze(gt_tensor,0)
|
133 |
+
|
134 |
+
return gt_tensor.type(torch.uint8), gt.shape[0:2]
|
135 |
+
# return gt_tensor, gt.shape[0:2]
|
136 |
+
|
137 |
+
class GOSRandomHFlip(object):
|
138 |
+
def __init__(self,prob=0.5):
|
139 |
+
self.prob = prob
|
140 |
+
def __call__(self,sample):
|
141 |
+
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
|
142 |
+
|
143 |
+
# random horizontal flip
|
144 |
+
if random.random() >= self.prob:
|
145 |
+
image = torch.flip(image,dims=[2])
|
146 |
+
label = torch.flip(label,dims=[2])
|
147 |
+
|
148 |
+
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape}
|
149 |
+
|
150 |
+
class GOSResize(object):
|
151 |
+
def __init__(self,size=[320,320]):
|
152 |
+
self.size = size
|
153 |
+
def __call__(self,sample):
|
154 |
+
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
|
155 |
+
|
156 |
+
# import time
|
157 |
+
# start = time.time()
|
158 |
+
|
159 |
+
image = torch.squeeze(F.upsample(torch.unsqueeze(image,0),self.size,mode='bilinear'),dim=0)
|
160 |
+
label = torch.squeeze(F.upsample(torch.unsqueeze(label,0),self.size,mode='bilinear'),dim=0)
|
161 |
+
|
162 |
+
# print("time for resize: ", time.time()-start)
|
163 |
+
|
164 |
+
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape}
|
165 |
+
|
166 |
+
class GOSRandomCrop(object):
|
167 |
+
def __init__(self,size=[288,288]):
|
168 |
+
self.size = size
|
169 |
+
def __call__(self,sample):
|
170 |
+
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
|
171 |
+
|
172 |
+
h, w = image.shape[1:]
|
173 |
+
new_h, new_w = self.size
|
174 |
+
|
175 |
+
top = np.random.randint(0, h - new_h)
|
176 |
+
left = np.random.randint(0, w - new_w)
|
177 |
+
|
178 |
+
image = image[:,top:top+new_h,left:left+new_w]
|
179 |
+
label = label[:,top:top+new_h,left:left+new_w]
|
180 |
+
|
181 |
+
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape}
|
182 |
+
|
183 |
+
|
184 |
+
class GOSNormalize(object):
|
185 |
+
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
|
186 |
+
self.mean = mean
|
187 |
+
self.std = std
|
188 |
+
|
189 |
+
def __call__(self,sample):
|
190 |
+
|
191 |
+
imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape']
|
192 |
+
image = normalize(image,self.mean,self.std)
|
193 |
+
|
194 |
+
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape}
|
195 |
+
|
196 |
+
|
197 |
+
class GOSDatasetCache(Dataset):
|
198 |
+
|
199 |
+
def __init__(self, name_im_gt_list, cache_size=[], cache_path='./cache', cache_file_name='dataset.json', cache_boost=False, transform=None):
|
200 |
+
|
201 |
+
|
202 |
+
self.cache_size = cache_size
|
203 |
+
self.cache_path = cache_path
|
204 |
+
self.cache_file_name = cache_file_name
|
205 |
+
self.cache_boost_name = ""
|
206 |
+
|
207 |
+
self.cache_boost = cache_boost
|
208 |
+
# self.ims_npy = None
|
209 |
+
# self.gts_npy = None
|
210 |
+
|
211 |
+
## cache all the images and ground truth into a single pytorch tensor
|
212 |
+
self.ims_pt = None
|
213 |
+
self.gts_pt = None
|
214 |
+
|
215 |
+
## we will cache the npy as well regardless of the cache_boost
|
216 |
+
# if(self.cache_boost):
|
217 |
+
self.cache_boost_name = cache_file_name.split('.json')[0]
|
218 |
+
|
219 |
+
self.transform = transform
|
220 |
+
|
221 |
+
self.dataset = {}
|
222 |
+
|
223 |
+
## combine different datasets into one
|
224 |
+
dataset_names = []
|
225 |
+
dt_name_list = [] # dataset name per image
|
226 |
+
im_name_list = [] # image name
|
227 |
+
im_path_list = [] # im path
|
228 |
+
gt_path_list = [] # gt path
|
229 |
+
im_ext_list = [] # im ext
|
230 |
+
gt_ext_list = [] # gt ext
|
231 |
+
for i in range(0,len(name_im_gt_list)):
|
232 |
+
dataset_names.append(name_im_gt_list[i]["dataset_name"])
|
233 |
+
# dataset name repeated based on the number of images in this dataset
|
234 |
+
dt_name_list.extend([name_im_gt_list[i]["dataset_name"] for x in name_im_gt_list[i]["im_path"]])
|
235 |
+
im_name_list.extend([x.split(os.sep)[-1].split(name_im_gt_list[i]["im_ext"])[0] for x in name_im_gt_list[i]["im_path"]])
|
236 |
+
im_path_list.extend(name_im_gt_list[i]["im_path"])
|
237 |
+
gt_path_list.extend(name_im_gt_list[i]["gt_path"])
|
238 |
+
im_ext_list.extend([name_im_gt_list[i]["im_ext"] for x in name_im_gt_list[i]["im_path"]])
|
239 |
+
gt_ext_list.extend([name_im_gt_list[i]["gt_ext"] for x in name_im_gt_list[i]["gt_path"]])
|
240 |
+
|
241 |
+
|
242 |
+
self.dataset["data_name"] = dt_name_list
|
243 |
+
self.dataset["im_name"] = im_name_list
|
244 |
+
self.dataset["im_path"] = im_path_list
|
245 |
+
self.dataset["ori_im_path"] = deepcopy(im_path_list)
|
246 |
+
self.dataset["gt_path"] = gt_path_list
|
247 |
+
self.dataset["ori_gt_path"] = deepcopy(gt_path_list)
|
248 |
+
self.dataset["im_shp"] = []
|
249 |
+
self.dataset["gt_shp"] = []
|
250 |
+
self.dataset["im_ext"] = im_ext_list
|
251 |
+
self.dataset["gt_ext"] = gt_ext_list
|
252 |
+
|
253 |
+
|
254 |
+
self.dataset["ims_pt_dir"] = ""
|
255 |
+
self.dataset["gts_pt_dir"] = ""
|
256 |
+
|
257 |
+
self.dataset = self.manage_cache(dataset_names)
|
258 |
+
|
259 |
+
def manage_cache(self,dataset_names):
|
260 |
+
if not os.path.exists(self.cache_path): # create the folder for cache
|
261 |
+
os.makedirs(self.cache_path)
|
262 |
+
cache_folder = os.path.join(self.cache_path, "_".join(dataset_names)+"_"+"x".join([str(x) for x in self.cache_size]))
|
263 |
+
if not os.path.exists(cache_folder): # check if the cache files are there, if not then cache
|
264 |
+
return self.cache(cache_folder)
|
265 |
+
return self.load_cache(cache_folder)
|
266 |
+
|
267 |
+
def cache(self,cache_folder):
|
268 |
+
os.mkdir(cache_folder)
|
269 |
+
cached_dataset = deepcopy(self.dataset)
|
270 |
+
|
271 |
+
# ims_list = []
|
272 |
+
# gts_list = []
|
273 |
+
ims_pt_list = []
|
274 |
+
gts_pt_list = []
|
275 |
+
for i, im_path in tqdm(enumerate(self.dataset["im_path"]), total=len(self.dataset["im_path"])):
|
276 |
+
|
277 |
+
im_id = cached_dataset["im_name"][i]
|
278 |
+
print("im_path: ", im_path)
|
279 |
+
im = im_reader(im_path)
|
280 |
+
im, im_shp = im_preprocess(im,self.cache_size)
|
281 |
+
im_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_im.pt")
|
282 |
+
torch.save(im,im_cache_file)
|
283 |
+
|
284 |
+
cached_dataset["im_path"][i] = im_cache_file
|
285 |
+
if(self.cache_boost):
|
286 |
+
ims_pt_list.append(torch.unsqueeze(im,0))
|
287 |
+
# ims_list.append(im.cpu().data.numpy().astype(np.uint8))
|
288 |
+
|
289 |
+
gt = np.zeros(im.shape[0:2])
|
290 |
+
if len(self.dataset["gt_path"])!=0:
|
291 |
+
gt = im_reader(self.dataset["gt_path"][i])
|
292 |
+
gt, gt_shp = gt_preprocess(gt,self.cache_size)
|
293 |
+
gt_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_gt.pt")
|
294 |
+
torch.save(gt,gt_cache_file)
|
295 |
+
if len(self.dataset["gt_path"])>0:
|
296 |
+
cached_dataset["gt_path"][i] = gt_cache_file
|
297 |
+
else:
|
298 |
+
cached_dataset["gt_path"].append(gt_cache_file)
|
299 |
+
if(self.cache_boost):
|
300 |
+
gts_pt_list.append(torch.unsqueeze(gt,0))
|
301 |
+
# gts_list.append(gt.cpu().data.numpy().astype(np.uint8))
|
302 |
+
|
303 |
+
# im_shp_cache_file = os.path.join(cache_folder,im_id + "_im_shp.pt")
|
304 |
+
# torch.save(gt_shp, shp_cache_file)
|
305 |
+
cached_dataset["im_shp"].append(im_shp)
|
306 |
+
# self.dataset["im_shp"].append(im_shp)
|
307 |
+
|
308 |
+
# shp_cache_file = os.path.join(cache_folder,im_id + "_gt_shp.pt")
|
309 |
+
# torch.save(gt_shp, shp_cache_file)
|
310 |
+
cached_dataset["gt_shp"].append(gt_shp)
|
311 |
+
# self.dataset["gt_shp"].append(gt_shp)
|
312 |
+
|
313 |
+
if(self.cache_boost):
|
314 |
+
cached_dataset["ims_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_ims.pt')
|
315 |
+
cached_dataset["gts_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_gts.pt')
|
316 |
+
self.ims_pt = torch.cat(ims_pt_list,dim=0)
|
317 |
+
self.gts_pt = torch.cat(gts_pt_list,dim=0)
|
318 |
+
torch.save(torch.cat(ims_pt_list,dim=0),cached_dataset["ims_pt_dir"])
|
319 |
+
torch.save(torch.cat(gts_pt_list,dim=0),cached_dataset["gts_pt_dir"])
|
320 |
+
|
321 |
+
try:
|
322 |
+
json_file = open(os.path.join(cache_folder, self.cache_file_name),"w")
|
323 |
+
json.dump(cached_dataset, json_file)
|
324 |
+
json_file.close()
|
325 |
+
except Exception:
|
326 |
+
raise FileNotFoundError("Cannot create JSON")
|
327 |
+
return cached_dataset
|
328 |
+
|
329 |
+
def load_cache(self, cache_folder):
|
330 |
+
json_file = open(os.path.join(cache_folder,self.cache_file_name),"r")
|
331 |
+
dataset = json.load(json_file)
|
332 |
+
json_file.close()
|
333 |
+
## if cache_boost is true, we will load the image npy and ground truth npy into the RAM
|
334 |
+
## otherwise the pytorch tensor will be loaded
|
335 |
+
if(self.cache_boost):
|
336 |
+
# self.ims_npy = np.load(dataset["ims_npy_dir"])
|
337 |
+
# self.gts_npy = np.load(dataset["gts_npy_dir"])
|
338 |
+
self.ims_pt = torch.load(dataset["ims_pt_dir"], map_location='cpu')
|
339 |
+
self.gts_pt = torch.load(dataset["gts_pt_dir"], map_location='cpu')
|
340 |
+
return dataset
|
341 |
+
|
342 |
+
def __len__(self):
|
343 |
+
return len(self.dataset["im_path"])
|
344 |
+
|
345 |
+
def __getitem__(self, idx):
|
346 |
+
|
347 |
+
im = None
|
348 |
+
gt = None
|
349 |
+
if(self.cache_boost and self.ims_pt is not None):
|
350 |
+
|
351 |
+
# start = time.time()
|
352 |
+
im = self.ims_pt[idx]#.type(torch.float32)
|
353 |
+
gt = self.gts_pt[idx]#.type(torch.float32)
|
354 |
+
# print(idx, 'time for pt loading: ', time.time()-start)
|
355 |
+
|
356 |
+
else:
|
357 |
+
# import time
|
358 |
+
# start = time.time()
|
359 |
+
# print("tensor***")
|
360 |
+
im_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["im_path"][idx].split(os.sep)[-2:]))
|
361 |
+
im = torch.load(im_pt_path)#(self.dataset["im_path"][idx])
|
362 |
+
gt_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["gt_path"][idx].split(os.sep)[-2:]))
|
363 |
+
gt = torch.load(gt_pt_path)#(self.dataset["gt_path"][idx])
|
364 |
+
# print(idx,'time for tensor loading: ', time.time()-start)
|
365 |
+
|
366 |
+
|
367 |
+
im_shp = self.dataset["im_shp"][idx]
|
368 |
+
# print("time for loading im and gt: ", time.time()-start)
|
369 |
+
|
370 |
+
# start_time = time.time()
|
371 |
+
im = torch.divide(im,255.0)
|
372 |
+
gt = torch.divide(gt,255.0)
|
373 |
+
# print(idx, 'time for normalize torch divide: ', time.time()-start_time)
|
374 |
+
|
375 |
+
sample = {
|
376 |
+
"imidx": torch.from_numpy(np.array(idx)),
|
377 |
+
"image": im,
|
378 |
+
"label": gt,
|
379 |
+
"shape": torch.from_numpy(np.array(im_shp)),
|
380 |
+
}
|
381 |
+
|
382 |
+
if self.transform:
|
383 |
+
sample = self.transform(sample)
|
384 |
+
|
385 |
+
return sample
|
demo_images/word_000000192.png
ADDED
demo_images/word_000000206.png
ADDED
demo_images/word_000004593.png
ADDED
demo_images/word_000005357.png
ADDED
demo_images/word_000005361.png
ADDED
models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from models.isnet import ISNetGTEncoder, ISNetDIS
|
models/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (242 Bytes). View file
|
|
models/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (229 Bytes). View file
|
|
models/__pycache__/isnet.cpython-39.pyc
ADDED
Binary file (13.2 kB). View file
|
|
models/__pycache__/u2netfast.cpython-37.pyc
ADDED
Binary file (13.8 kB). View file
|
|
models/isnet.py
ADDED
@@ -0,0 +1,610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import models
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
bce_loss = nn.BCELoss(size_average=True)
|
8 |
+
def muti_loss_fusion(preds, target):
|
9 |
+
loss0 = 0.0
|
10 |
+
loss = 0.0
|
11 |
+
|
12 |
+
for i in range(0,len(preds)):
|
13 |
+
# print("i: ", i, preds[i].shape)
|
14 |
+
if(preds[i].shape[2]!=target.shape[2] or preds[i].shape[3]!=target.shape[3]):
|
15 |
+
# tmp_target = _upsample_like(target,preds[i])
|
16 |
+
tmp_target = F.interpolate(target, size=preds[i].size()[2:], mode='bilinear', align_corners=True)
|
17 |
+
loss = loss + bce_loss(preds[i],tmp_target)
|
18 |
+
else:
|
19 |
+
loss = loss + bce_loss(preds[i],target)
|
20 |
+
if(i==0):
|
21 |
+
loss0 = loss
|
22 |
+
return loss0, loss
|
23 |
+
|
24 |
+
fea_loss = nn.MSELoss(size_average=True)
|
25 |
+
kl_loss = nn.KLDivLoss(size_average=True)
|
26 |
+
l1_loss = nn.L1Loss(size_average=True)
|
27 |
+
smooth_l1_loss = nn.SmoothL1Loss(size_average=True)
|
28 |
+
def muti_loss_fusion_kl(preds, target, dfs, fs, mode='MSE'):
|
29 |
+
loss0 = 0.0
|
30 |
+
loss = 0.0
|
31 |
+
|
32 |
+
for i in range(0,len(preds)):
|
33 |
+
# print("i: ", i, preds[i].shape)
|
34 |
+
if(preds[i].shape[2]!=target.shape[2] or preds[i].shape[3]!=target.shape[3]):
|
35 |
+
# tmp_target = _upsample_like(target,preds[i])
|
36 |
+
tmp_target = F.interpolate(target, size=preds[i].size()[2:], mode='bilinear', align_corners=True)
|
37 |
+
loss = loss + bce_loss(preds[i],tmp_target)
|
38 |
+
else:
|
39 |
+
loss = loss + bce_loss(preds[i],target)
|
40 |
+
if(i==0):
|
41 |
+
loss0 = loss
|
42 |
+
|
43 |
+
for i in range(0,len(dfs)):
|
44 |
+
if(mode=='MSE'):
|
45 |
+
loss = loss + fea_loss(dfs[i],fs[i]) ### add the mse loss of features as additional constraints
|
46 |
+
# print("fea_loss: ", fea_loss(dfs[i],fs[i]).item())
|
47 |
+
elif(mode=='KL'):
|
48 |
+
loss = loss + kl_loss(F.log_softmax(dfs[i],dim=1),F.softmax(fs[i],dim=1))
|
49 |
+
# print("kl_loss: ", kl_loss(F.log_softmax(dfs[i],dim=1),F.softmax(fs[i],dim=1)).item())
|
50 |
+
elif(mode=='MAE'):
|
51 |
+
loss = loss + l1_loss(dfs[i],fs[i])
|
52 |
+
# print("ls_loss: ", l1_loss(dfs[i],fs[i]))
|
53 |
+
elif(mode=='SmoothL1'):
|
54 |
+
loss = loss + smooth_l1_loss(dfs[i],fs[i])
|
55 |
+
# print("SmoothL1: ", smooth_l1_loss(dfs[i],fs[i]).item())
|
56 |
+
|
57 |
+
return loss0, loss
|
58 |
+
|
59 |
+
class REBNCONV(nn.Module):
|
60 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
61 |
+
super(REBNCONV,self).__init__()
|
62 |
+
|
63 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
|
64 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
65 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
66 |
+
|
67 |
+
def forward(self,x):
|
68 |
+
|
69 |
+
hx = x
|
70 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
71 |
+
|
72 |
+
return xout
|
73 |
+
|
74 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
75 |
+
def _upsample_like(src,tar):
|
76 |
+
|
77 |
+
src = F.upsample(src,size=tar.shape[2:],mode='bilinear')
|
78 |
+
|
79 |
+
return src
|
80 |
+
|
81 |
+
|
82 |
+
### RSU-7 ###
|
83 |
+
class RSU7(nn.Module):
|
84 |
+
|
85 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
86 |
+
super(RSU7,self).__init__()
|
87 |
+
|
88 |
+
self.in_ch = in_ch
|
89 |
+
self.mid_ch = mid_ch
|
90 |
+
self.out_ch = out_ch
|
91 |
+
|
92 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
|
93 |
+
|
94 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
95 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
96 |
+
|
97 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
98 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
99 |
+
|
100 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
101 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
102 |
+
|
103 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
104 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
105 |
+
|
106 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
107 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
108 |
+
|
109 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
110 |
+
|
111 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
112 |
+
|
113 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
114 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
115 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
116 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
117 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
118 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
119 |
+
|
120 |
+
def forward(self,x):
|
121 |
+
b, c, h, w = x.shape
|
122 |
+
|
123 |
+
hx = x
|
124 |
+
hxin = self.rebnconvin(hx)
|
125 |
+
|
126 |
+
hx1 = self.rebnconv1(hxin)
|
127 |
+
hx = self.pool1(hx1)
|
128 |
+
|
129 |
+
hx2 = self.rebnconv2(hx)
|
130 |
+
hx = self.pool2(hx2)
|
131 |
+
|
132 |
+
hx3 = self.rebnconv3(hx)
|
133 |
+
hx = self.pool3(hx3)
|
134 |
+
|
135 |
+
hx4 = self.rebnconv4(hx)
|
136 |
+
hx = self.pool4(hx4)
|
137 |
+
|
138 |
+
hx5 = self.rebnconv5(hx)
|
139 |
+
hx = self.pool5(hx5)
|
140 |
+
|
141 |
+
hx6 = self.rebnconv6(hx)
|
142 |
+
|
143 |
+
hx7 = self.rebnconv7(hx6)
|
144 |
+
|
145 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
146 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
147 |
+
|
148 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
149 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
150 |
+
|
151 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
152 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
153 |
+
|
154 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
155 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
156 |
+
|
157 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
158 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
159 |
+
|
160 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
161 |
+
|
162 |
+
return hx1d + hxin
|
163 |
+
|
164 |
+
|
165 |
+
### RSU-6 ###
|
166 |
+
class RSU6(nn.Module):
|
167 |
+
|
168 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
169 |
+
super(RSU6,self).__init__()
|
170 |
+
|
171 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
172 |
+
|
173 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
174 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
175 |
+
|
176 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
177 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
178 |
+
|
179 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
180 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
181 |
+
|
182 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
183 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
184 |
+
|
185 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
186 |
+
|
187 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
188 |
+
|
189 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
190 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
191 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
192 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
193 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
194 |
+
|
195 |
+
def forward(self,x):
|
196 |
+
|
197 |
+
hx = x
|
198 |
+
|
199 |
+
hxin = self.rebnconvin(hx)
|
200 |
+
|
201 |
+
hx1 = self.rebnconv1(hxin)
|
202 |
+
hx = self.pool1(hx1)
|
203 |
+
|
204 |
+
hx2 = self.rebnconv2(hx)
|
205 |
+
hx = self.pool2(hx2)
|
206 |
+
|
207 |
+
hx3 = self.rebnconv3(hx)
|
208 |
+
hx = self.pool3(hx3)
|
209 |
+
|
210 |
+
hx4 = self.rebnconv4(hx)
|
211 |
+
hx = self.pool4(hx4)
|
212 |
+
|
213 |
+
hx5 = self.rebnconv5(hx)
|
214 |
+
|
215 |
+
hx6 = self.rebnconv6(hx5)
|
216 |
+
|
217 |
+
|
218 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
219 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
220 |
+
|
221 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
222 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
223 |
+
|
224 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
225 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
226 |
+
|
227 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
228 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
229 |
+
|
230 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
231 |
+
|
232 |
+
return hx1d + hxin
|
233 |
+
|
234 |
+
### RSU-5 ###
|
235 |
+
class RSU5(nn.Module):
|
236 |
+
|
237 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
238 |
+
super(RSU5,self).__init__()
|
239 |
+
|
240 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
241 |
+
|
242 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
243 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
244 |
+
|
245 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
246 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
247 |
+
|
248 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
249 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
250 |
+
|
251 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
252 |
+
|
253 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
254 |
+
|
255 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
256 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
257 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
258 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
259 |
+
|
260 |
+
def forward(self,x):
|
261 |
+
|
262 |
+
hx = x
|
263 |
+
|
264 |
+
hxin = self.rebnconvin(hx)
|
265 |
+
|
266 |
+
hx1 = self.rebnconv1(hxin)
|
267 |
+
hx = self.pool1(hx1)
|
268 |
+
|
269 |
+
hx2 = self.rebnconv2(hx)
|
270 |
+
hx = self.pool2(hx2)
|
271 |
+
|
272 |
+
hx3 = self.rebnconv3(hx)
|
273 |
+
hx = self.pool3(hx3)
|
274 |
+
|
275 |
+
hx4 = self.rebnconv4(hx)
|
276 |
+
|
277 |
+
hx5 = self.rebnconv5(hx4)
|
278 |
+
|
279 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
280 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
281 |
+
|
282 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
283 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
284 |
+
|
285 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
286 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
287 |
+
|
288 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
289 |
+
|
290 |
+
return hx1d + hxin
|
291 |
+
|
292 |
+
### RSU-4 ###
|
293 |
+
class RSU4(nn.Module):
|
294 |
+
|
295 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
296 |
+
super(RSU4,self).__init__()
|
297 |
+
|
298 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
299 |
+
|
300 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
301 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
302 |
+
|
303 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
304 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
305 |
+
|
306 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
307 |
+
|
308 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
309 |
+
|
310 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
311 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
312 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
313 |
+
|
314 |
+
def forward(self,x):
|
315 |
+
|
316 |
+
hx = x
|
317 |
+
|
318 |
+
hxin = self.rebnconvin(hx)
|
319 |
+
|
320 |
+
hx1 = self.rebnconv1(hxin)
|
321 |
+
hx = self.pool1(hx1)
|
322 |
+
|
323 |
+
hx2 = self.rebnconv2(hx)
|
324 |
+
hx = self.pool2(hx2)
|
325 |
+
|
326 |
+
hx3 = self.rebnconv3(hx)
|
327 |
+
|
328 |
+
hx4 = self.rebnconv4(hx3)
|
329 |
+
|
330 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
331 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
332 |
+
|
333 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
334 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
335 |
+
|
336 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
337 |
+
|
338 |
+
return hx1d + hxin
|
339 |
+
|
340 |
+
### RSU-4F ###
|
341 |
+
class RSU4F(nn.Module):
|
342 |
+
|
343 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
344 |
+
super(RSU4F,self).__init__()
|
345 |
+
|
346 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
347 |
+
|
348 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
349 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
350 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
351 |
+
|
352 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
353 |
+
|
354 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
355 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
356 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
357 |
+
|
358 |
+
def forward(self,x):
|
359 |
+
|
360 |
+
hx = x
|
361 |
+
|
362 |
+
hxin = self.rebnconvin(hx)
|
363 |
+
|
364 |
+
hx1 = self.rebnconv1(hxin)
|
365 |
+
hx2 = self.rebnconv2(hx1)
|
366 |
+
hx3 = self.rebnconv3(hx2)
|
367 |
+
|
368 |
+
hx4 = self.rebnconv4(hx3)
|
369 |
+
|
370 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
371 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
372 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
373 |
+
|
374 |
+
return hx1d + hxin
|
375 |
+
|
376 |
+
|
377 |
+
class myrebnconv(nn.Module):
|
378 |
+
def __init__(self, in_ch=3,
|
379 |
+
out_ch=1,
|
380 |
+
kernel_size=3,
|
381 |
+
stride=1,
|
382 |
+
padding=1,
|
383 |
+
dilation=1,
|
384 |
+
groups=1):
|
385 |
+
super(myrebnconv,self).__init__()
|
386 |
+
|
387 |
+
self.conv = nn.Conv2d(in_ch,
|
388 |
+
out_ch,
|
389 |
+
kernel_size=kernel_size,
|
390 |
+
stride=stride,
|
391 |
+
padding=padding,
|
392 |
+
dilation=dilation,
|
393 |
+
groups=groups)
|
394 |
+
self.bn = nn.BatchNorm2d(out_ch)
|
395 |
+
self.rl = nn.ReLU(inplace=True)
|
396 |
+
|
397 |
+
def forward(self,x):
|
398 |
+
return self.rl(self.bn(self.conv(x)))
|
399 |
+
|
400 |
+
|
401 |
+
class ISNetGTEncoder(nn.Module):
|
402 |
+
|
403 |
+
def __init__(self,in_ch=1,out_ch=1):
|
404 |
+
super(ISNetGTEncoder,self).__init__()
|
405 |
+
|
406 |
+
self.conv_in = myrebnconv(in_ch,16,3,stride=2,padding=1) # nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
407 |
+
|
408 |
+
self.stage1 = RSU7(16,16,64)
|
409 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
410 |
+
|
411 |
+
self.stage2 = RSU6(64,16,64)
|
412 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
413 |
+
|
414 |
+
self.stage3 = RSU5(64,32,128)
|
415 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
416 |
+
|
417 |
+
self.stage4 = RSU4(128,32,256)
|
418 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
419 |
+
|
420 |
+
self.stage5 = RSU4F(256,64,512)
|
421 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
422 |
+
|
423 |
+
self.stage6 = RSU4F(512,64,512)
|
424 |
+
|
425 |
+
|
426 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
427 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
428 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
429 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
430 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
431 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
432 |
+
|
433 |
+
def compute_loss(self, preds, targets):
|
434 |
+
|
435 |
+
return muti_loss_fusion(preds,targets)
|
436 |
+
|
437 |
+
def forward(self,x):
|
438 |
+
|
439 |
+
hx = x
|
440 |
+
|
441 |
+
hxin = self.conv_in(hx)
|
442 |
+
# hx = self.pool_in(hxin)
|
443 |
+
|
444 |
+
#stage 1
|
445 |
+
hx1 = self.stage1(hxin)
|
446 |
+
hx = self.pool12(hx1)
|
447 |
+
|
448 |
+
#stage 2
|
449 |
+
hx2 = self.stage2(hx)
|
450 |
+
hx = self.pool23(hx2)
|
451 |
+
|
452 |
+
#stage 3
|
453 |
+
hx3 = self.stage3(hx)
|
454 |
+
hx = self.pool34(hx3)
|
455 |
+
|
456 |
+
#stage 4
|
457 |
+
hx4 = self.stage4(hx)
|
458 |
+
hx = self.pool45(hx4)
|
459 |
+
|
460 |
+
#stage 5
|
461 |
+
hx5 = self.stage5(hx)
|
462 |
+
hx = self.pool56(hx5)
|
463 |
+
|
464 |
+
#stage 6
|
465 |
+
hx6 = self.stage6(hx)
|
466 |
+
|
467 |
+
|
468 |
+
#side output
|
469 |
+
d1 = self.side1(hx1)
|
470 |
+
d1 = _upsample_like(d1,x)
|
471 |
+
|
472 |
+
d2 = self.side2(hx2)
|
473 |
+
d2 = _upsample_like(d2,x)
|
474 |
+
|
475 |
+
d3 = self.side3(hx3)
|
476 |
+
d3 = _upsample_like(d3,x)
|
477 |
+
|
478 |
+
d4 = self.side4(hx4)
|
479 |
+
d4 = _upsample_like(d4,x)
|
480 |
+
|
481 |
+
d5 = self.side5(hx5)
|
482 |
+
d5 = _upsample_like(d5,x)
|
483 |
+
|
484 |
+
d6 = self.side6(hx6)
|
485 |
+
d6 = _upsample_like(d6,x)
|
486 |
+
|
487 |
+
# d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
488 |
+
|
489 |
+
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)], [hx1,hx2,hx3,hx4,hx5,hx6]
|
490 |
+
|
491 |
+
class ISNetDIS(nn.Module):
|
492 |
+
|
493 |
+
def __init__(self,in_ch=3,out_ch=1):
|
494 |
+
super(ISNetDIS,self).__init__()
|
495 |
+
|
496 |
+
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
497 |
+
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
498 |
+
|
499 |
+
self.stage1 = RSU7(64,32,64)
|
500 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
501 |
+
|
502 |
+
self.stage2 = RSU6(64,32,128)
|
503 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
504 |
+
|
505 |
+
self.stage3 = RSU5(128,64,256)
|
506 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
507 |
+
|
508 |
+
self.stage4 = RSU4(256,128,512)
|
509 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
510 |
+
|
511 |
+
self.stage5 = RSU4F(512,256,512)
|
512 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
513 |
+
|
514 |
+
self.stage6 = RSU4F(512,256,512)
|
515 |
+
|
516 |
+
# decoder
|
517 |
+
self.stage5d = RSU4F(1024,256,512)
|
518 |
+
self.stage4d = RSU4(1024,128,256)
|
519 |
+
self.stage3d = RSU5(512,64,128)
|
520 |
+
self.stage2d = RSU6(256,32,64)
|
521 |
+
self.stage1d = RSU7(128,16,64)
|
522 |
+
|
523 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
524 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
525 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
526 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
527 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
528 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
529 |
+
|
530 |
+
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
531 |
+
|
532 |
+
def compute_loss_kl(self, preds, targets, dfs, fs, mode='MSE'):
|
533 |
+
|
534 |
+
# return muti_loss_fusion(preds,targets)
|
535 |
+
return muti_loss_fusion_kl(preds, targets, dfs, fs, mode=mode)
|
536 |
+
|
537 |
+
def compute_loss(self, preds, targets):
|
538 |
+
|
539 |
+
# return muti_loss_fusion(preds,targets)
|
540 |
+
return muti_loss_fusion(preds, targets)
|
541 |
+
|
542 |
+
def forward(self,x):
|
543 |
+
|
544 |
+
hx = x
|
545 |
+
|
546 |
+
hxin = self.conv_in(hx)
|
547 |
+
#hx = self.pool_in(hxin)
|
548 |
+
|
549 |
+
#stage 1
|
550 |
+
hx1 = self.stage1(hxin)
|
551 |
+
hx = self.pool12(hx1)
|
552 |
+
|
553 |
+
#stage 2
|
554 |
+
hx2 = self.stage2(hx)
|
555 |
+
hx = self.pool23(hx2)
|
556 |
+
|
557 |
+
#stage 3
|
558 |
+
hx3 = self.stage3(hx)
|
559 |
+
hx = self.pool34(hx3)
|
560 |
+
|
561 |
+
#stage 4
|
562 |
+
hx4 = self.stage4(hx)
|
563 |
+
hx = self.pool45(hx4)
|
564 |
+
|
565 |
+
#stage 5
|
566 |
+
hx5 = self.stage5(hx)
|
567 |
+
hx = self.pool56(hx5)
|
568 |
+
|
569 |
+
#stage 6
|
570 |
+
hx6 = self.stage6(hx)
|
571 |
+
hx6up = _upsample_like(hx6,hx5)
|
572 |
+
|
573 |
+
#-------------------- decoder --------------------
|
574 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
575 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
576 |
+
|
577 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
578 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
579 |
+
|
580 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
581 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
582 |
+
|
583 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
584 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
585 |
+
|
586 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
587 |
+
|
588 |
+
|
589 |
+
#side output
|
590 |
+
d1 = self.side1(hx1d)
|
591 |
+
d1 = _upsample_like(d1,x)
|
592 |
+
|
593 |
+
d2 = self.side2(hx2d)
|
594 |
+
d2 = _upsample_like(d2,x)
|
595 |
+
|
596 |
+
d3 = self.side3(hx3d)
|
597 |
+
d3 = _upsample_like(d3,x)
|
598 |
+
|
599 |
+
d4 = self.side4(hx4d)
|
600 |
+
d4 = _upsample_like(d4,x)
|
601 |
+
|
602 |
+
d5 = self.side5(hx5d)
|
603 |
+
d5 = _upsample_like(d5,x)
|
604 |
+
|
605 |
+
d6 = self.side6(hx6)
|
606 |
+
d6 = _upsample_like(d6,x)
|
607 |
+
|
608 |
+
# d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
609 |
+
|
610 |
+
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
|
trained_models/gpu_itr_24375_traLoss_1.0196_traTarLoss_0.0403_valLoss_0.8077_valTarLoss_0.0391_maxF1_0.9133_mae_0.0237_time_0.012338.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c30c0eca38fc8f00eaa1c292b5c72d400abafdb517d96c01f4286fc9960d5493
|
3 |
+
size 176719173
|