import cv2 import gradio as gr import os from PIL import Image import numpy as np import torch from torch.autograd import Variable from torchvision import transforms import torch.nn.functional as F import gdown import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # project imports from data_loader_cache import normalize, im_reader, im_preprocess from models import * #Helpers device = 'cuda' if torch.cuda.is_available() else 'cpu' class GOSNormalize(object): ''' Normalize the Image using torch.transforms ''' def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): self.mean = mean self.std = std def __call__(self,image): image = normalize(image,self.mean,self.std) return image transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) def load_image(im_path, hypar): im = im_reader(im_path) im, im_shp = im_preprocess(im, hypar["cache_size"]) im = torch.divide(im,255.0) shape = torch.from_numpy(np.array(im_shp)) return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape def build_model(hypar,device): net = hypar["model"]#GOSNETINC(3,1) # convert to half precision if(hypar["model_digit"]=="half"): net.half() for layer in net.modules(): if isinstance(layer, nn.BatchNorm2d): layer.float() net.to(device) if(hypar["restore_model"]!=""): net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) net.to(device) net.eval() return net def predict(net, inputs_val, shapes_val, hypar, device): ''' Given an Image, predict the mask ''' net.eval() if(hypar["model_digit"]=="full"): inputs_val = inputs_val.type(torch.FloatTensor) else: inputs_val = inputs_val.type(torch.HalfTensor) inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable ds_val = net(inputs_val_v)[0] # list of 6 results pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction ## recover the prediction spatial size to the orignal image size pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) ma = torch.max(pred_val) mi = torch.min(pred_val) pred_val = (pred_val-mi)/(ma-mi) # max = 1 if device == 'cuda': torch.cuda.empty_cache() return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need # Set Parameters hypar = {} # paramters for inferencing hypar["model_path"] =r"trained_models" ## load trained weights from this path hypar["restore_model"] = "gpu_itr_24375_traLoss_1.0196_traTarLoss_0.0403_valLoss_0.8077_valTarLoss_0.0391_maxF1_0.9133_mae_0.0237_time_0.012338.pth" ## name of the to-be-loaded weights hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision ## choose floating point accuracy -- hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number hypar["seed"] = 0 hypar["cache_size"] = [384, 384] ## cached input spatial resolution, can be configured into different size ## data augmentation parameters --- hypar["input_size"] = [384, 384] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images hypar["crop_size"] = [384, 384] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation hypar["model"] = ISNetDIS() # Build Model net = build_model(hypar, device) # Change your inference function to accept file path def inference(image_path: str): image_tensor, orig_size = load_image(image_path, hypar) mask = predict(net, image_tensor, orig_size, hypar, device) pil_mask = Image.fromarray(mask).convert("L") im_rgb = Image.open(image_path).convert("RGB") im_rgba = im_rgb.copy() im_rgba.putalpha(pil_mask) return [np.array(im_rgba), np.array(pil_mask)] title = "Highly Accurate Dichotomous Image Segmentation" description = "This is an unofficial demo for DIS, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.
GitHub: https://github.com/tuanlda78202/cvps23)" article = "
visitor badge
" # Change gr.Interface call interface = gr.Interface( fn=inference, inputs=gr.inputs.Image(type='filepath'), outputs=[gr.outputs.Image(type='numpy'), gr.outputs.Image(type='numpy')], examples=[[r'demo_images\word_000000192.png'], [r'demo_images\word_000000206.png'], [r'demo_images\word_000004593.png'], [r'demo_images\word_000005357.png'], [r'demo_images\word_000005361.png']], title=title, description=description, article=article, allow_flagging='never', theme="default", cache_examples=False, ).launch(enable_queue=True, debug=True)