twitter_viz / app.py
johnowhitaker's picture
Update app.py
793922a
import streamlit as st
import pandas as pd
from matplotlib import pyplot as plt
import twint
import nest_asyncio
import multiprocessing.pool
import functools
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import softmax
import csv
import urllib.request
import IPython.display as ipd
st.write('Loading...')
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
# Loading pretrained model
MODEL = 'cardiffnlp/twitter-roberta-base-sentiment'
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
model.save_pretrained(MODEL)
tokenizer.save_pretrained(MODEL)
# Func to get a score using the above model
def combined_score(text):
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
return -scores[0] + scores[2] # scores = [negative, neutral, positive]
# https://stackoverflow.com/questions/492519/timeout-on-a-function-call
def timeout(max_timeout):
"""Timeout decorator, parameter in seconds."""
def timeout_decorator(item):
"""Wrap the original function."""
@functools.wraps(item)
def func_wrapper(*args, **kwargs):
"""Closure for function."""
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
# raises a TimeoutError if execution exceeds max_timeout
return async_result.get(max_timeout)
return func_wrapper
return timeout_decorator
# Getting tweets from a user
@timeout(120.0)
def get_tweets(username, limit=500, save_name=None):
#nest_asyncio.apply() # Helps avoid RuntimeError: This event loop is already running
# Setup config
c = twint.Config() # Create a config object to store our settings
c.Limit = limit # Max number of tweets to fetch (increments of 20)
c.Username = username # User of interest
c.Pandas = True # Store tweets in a dataframe
c.Hide_output = True # Avoid printing out tweets
# Run the seearch
twint.run.Search(c)
# Get the results and optionally save to a file as well
df = twint.storage.panda.Tweets_df
if save_name != None:
df.to_csv(save_name)
return df
title = st.title('Twitter Sentiment Map Thingee')
with st.form("my_form"):
st.write("Parameters:")
user = st.text_input("Twitter Username")
n_tweets = st.slider('How Many Tweets', 20, 2000, 20)
# Every form must have a submit button.
submitted = st.form_submit_button("Submit")
if submitted:
st.write("Fetching user", user, "n_tweets", n_tweets)
tweets = get_tweets(user, limit=n_tweets)
st.write("Resulting dataframe shape:", tweets.shape)
st.write("Calculating sentiments...")
tweets['sentiment'] = tweets['tweet'].map(lambda s: combined_score(s))
tweets['tweet_length'] = tweets['tweet'].map(lambda s: len(s))
st.write("Average sentiment:", tweets.sentiment.mean())
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
axs[0].hexbin(tweets['tweet_length'], tweets['sentiment']*1,
gridsize=20, bins=12, cmap='inferno')
axs[0].set_title('Tweet Sentiment and Length')
axs[1].scatter(tweets['tweet_length'], tweets['sentiment'])
axs[1].set_title('Tweet Sentiment vs Length')
plt.setp(axs[:], xlabel='Tweet Length')
plt.setp(axs[:], ylabel='Sentiment')
st.pyplot(fig)